{"title":"M2GCNet:多模态图卷积网络用于在多个磁共振成像序列中精确划分脑肿瘤。","authors":"Tongxue Zhou","doi":"10.1109/TIP.2024.3451936","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of brain tumors across multiple MRI sequences is essential for diagnosis, treatment planning, and clinical decision-making. In this paper, I propose a cutting-edge framework, named multi-modal graph convolution network (M2GCNet), to explore the relationships across different MR modalities, and address the challenge of brain tumor segmentation. The core of M2GCNet is the multi-modal graph convolution module (M2GCM), a pivotal component that represents MR modalities as graphs, with nodes corresponding to image pixels and edges capturing latent relationships between pixels. This graph-based representation enables the effective utilization of both local and global contextual information. Notably, M2GCM comprises two important modules: the spatial-wise graph convolution module (SGCM), adept at capturing extensive spatial dependencies among distinct regions within an image, and the channel-wise graph convolution module (CGCM), dedicated to modelling intricate contextual dependencies among different channels within the image. Additionally, acknowledging the intrinsic correlation present among different MR modalities, a multi-modal correlation loss function is introduced. This novel loss function aims to capture specific nonlinear relationships between correlated modality pairs, enhancing the model’s ability to achieve accurate segmentation results. The experimental evaluation on two brain tumor datasets demonstrates the superiority of the proposed M2GCNet over other state-of-the-art segmentation methods. Furthermore, the proposed method paves the way for improved tumor diagnosis, multi-modal information fusion, and a deeper understanding of brain tumor pathology.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"4896-4910"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2GCNet: Multi-Modal Graph Convolution Network for Precise Brain Tumor Segmentation Across Multiple MRI Sequences\",\"authors\":\"Tongxue Zhou\",\"doi\":\"10.1109/TIP.2024.3451936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of brain tumors across multiple MRI sequences is essential for diagnosis, treatment planning, and clinical decision-making. In this paper, I propose a cutting-edge framework, named multi-modal graph convolution network (M2GCNet), to explore the relationships across different MR modalities, and address the challenge of brain tumor segmentation. The core of M2GCNet is the multi-modal graph convolution module (M2GCM), a pivotal component that represents MR modalities as graphs, with nodes corresponding to image pixels and edges capturing latent relationships between pixels. This graph-based representation enables the effective utilization of both local and global contextual information. Notably, M2GCM comprises two important modules: the spatial-wise graph convolution module (SGCM), adept at capturing extensive spatial dependencies among distinct regions within an image, and the channel-wise graph convolution module (CGCM), dedicated to modelling intricate contextual dependencies among different channels within the image. Additionally, acknowledging the intrinsic correlation present among different MR modalities, a multi-modal correlation loss function is introduced. This novel loss function aims to capture specific nonlinear relationships between correlated modality pairs, enhancing the model’s ability to achieve accurate segmentation results. The experimental evaluation on two brain tumor datasets demonstrates the superiority of the proposed M2GCNet over other state-of-the-art segmentation methods. Furthermore, the proposed method paves the way for improved tumor diagnosis, multi-modal information fusion, and a deeper understanding of brain tumor pathology.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"4896-4910\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666999/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666999/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
M2GCNet: Multi-Modal Graph Convolution Network for Precise Brain Tumor Segmentation Across Multiple MRI Sequences
Accurate segmentation of brain tumors across multiple MRI sequences is essential for diagnosis, treatment planning, and clinical decision-making. In this paper, I propose a cutting-edge framework, named multi-modal graph convolution network (M2GCNet), to explore the relationships across different MR modalities, and address the challenge of brain tumor segmentation. The core of M2GCNet is the multi-modal graph convolution module (M2GCM), a pivotal component that represents MR modalities as graphs, with nodes corresponding to image pixels and edges capturing latent relationships between pixels. This graph-based representation enables the effective utilization of both local and global contextual information. Notably, M2GCM comprises two important modules: the spatial-wise graph convolution module (SGCM), adept at capturing extensive spatial dependencies among distinct regions within an image, and the channel-wise graph convolution module (CGCM), dedicated to modelling intricate contextual dependencies among different channels within the image. Additionally, acknowledging the intrinsic correlation present among different MR modalities, a multi-modal correlation loss function is introduced. This novel loss function aims to capture specific nonlinear relationships between correlated modality pairs, enhancing the model’s ability to achieve accurate segmentation results. The experimental evaluation on two brain tumor datasets demonstrates the superiority of the proposed M2GCNet over other state-of-the-art segmentation methods. Furthermore, the proposed method paves the way for improved tumor diagnosis, multi-modal information fusion, and a deeper understanding of brain tumor pathology.