两种鳉鱼的耐缺氧能力

IF 2.2 3区 生物学 Q1 ZOOLOGY
Peyton A Thomas, Stephen T Kinsey
{"title":"两种鳉鱼的耐缺氧能力","authors":"Peyton A Thomas, Stephen T Kinsey","doi":"10.1093/icb/icae144","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia tolerance in aquatic ectotherms involves a suite of behavioral and physiological responses at the organismal, tissue, and cellular levels. The current study evaluated two closely related killifish species (Fundulus heteroclitus, Fundulus majalis) to evaluate responses to acute moderate and acute severe hypoxia. Routine metabolic rate and loss of equilibrium were assessed, followed by analysis in skeletal muscle of markers of oxidative damage to proteins (2,4-DNPH), lipids (4-HNE), and DNA (8-OHdG), hypoxia signaling (HIF1α, HIF2α), cellular energy state (p-AMPK: AMPK), and protein degradation (Ubiquitin, LC3B, Calpain 2, Hsp70). Both species had a similar reduction in metabolic rate at low PO2. However, F. heteroclitus was the more hypoxia-tolerant species based on a lower PO2 at which there was loss of equilibrium, perhaps due in part to a lower oxygen demand at all oxygen tensions. Despite the differences in hypoxia tolerance between the species, skeletal muscle molecular markers were largely insensitive to hypoxia, and there were few differences in responses between the species. Thus, the metabolic depression observed at the whole animal level appears to limit perturbations in skeletal muscle in both species during the hypoxia treatments.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":"1115-1130"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518574/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypoxia Tolerance of Two Killifish Species.\",\"authors\":\"Peyton A Thomas, Stephen T Kinsey\",\"doi\":\"10.1093/icb/icae144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxia tolerance in aquatic ectotherms involves a suite of behavioral and physiological responses at the organismal, tissue, and cellular levels. The current study evaluated two closely related killifish species (Fundulus heteroclitus, Fundulus majalis) to evaluate responses to acute moderate and acute severe hypoxia. Routine metabolic rate and loss of equilibrium were assessed, followed by analysis in skeletal muscle of markers of oxidative damage to proteins (2,4-DNPH), lipids (4-HNE), and DNA (8-OHdG), hypoxia signaling (HIF1α, HIF2α), cellular energy state (p-AMPK: AMPK), and protein degradation (Ubiquitin, LC3B, Calpain 2, Hsp70). Both species had a similar reduction in metabolic rate at low PO2. However, F. heteroclitus was the more hypoxia-tolerant species based on a lower PO2 at which there was loss of equilibrium, perhaps due in part to a lower oxygen demand at all oxygen tensions. Despite the differences in hypoxia tolerance between the species, skeletal muscle molecular markers were largely insensitive to hypoxia, and there were few differences in responses between the species. Thus, the metabolic depression observed at the whole animal level appears to limit perturbations in skeletal muscle in both species during the hypoxia treatments.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":\" \",\"pages\":\"1115-1130\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518574/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icae144\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae144","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水生外温动物的耐缺氧能力涉及生物体、组织和细胞层面的一系列行为和生理反应。目前的研究评估了两种密切相关的鳉鱼(Fundulus heteroclitus 和 Fundulus majalis)对急性中度和急性重度缺氧的反应。首先评估了常规代谢率和平衡的丧失,然后分析了骨骼肌中蛋白质(2,4-DNPH)、脂质(4-HNE)和 DNA(8-OHdG)氧化损伤的标记物、缺氧信号(HIF1α、HIF2α)、细胞能量状态(p-AMPK:AMPK)和蛋白质降解(泛素、LC3B、钙蛋白酶 2、Hsp70)。在低 PO2 条件下,两种鱼的代谢率都有类似的下降。然而,根据失去平衡的较低 PO2 值来看,异尖吻鲈是更耐缺氧的物种,部分原因可能是其在所有氧张力下的需氧量都较低。尽管不同物种对缺氧的耐受性不同,但骨骼肌分子标记物对缺氧基本不敏感,物种间的反应差异也很小。因此,在整个动物水平上观察到的代谢抑制似乎限制了两种动物在缺氧处理期间骨骼肌的扰动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypoxia Tolerance of Two Killifish Species.

Hypoxia tolerance in aquatic ectotherms involves a suite of behavioral and physiological responses at the organismal, tissue, and cellular levels. The current study evaluated two closely related killifish species (Fundulus heteroclitus, Fundulus majalis) to evaluate responses to acute moderate and acute severe hypoxia. Routine metabolic rate and loss of equilibrium were assessed, followed by analysis in skeletal muscle of markers of oxidative damage to proteins (2,4-DNPH), lipids (4-HNE), and DNA (8-OHdG), hypoxia signaling (HIF1α, HIF2α), cellular energy state (p-AMPK: AMPK), and protein degradation (Ubiquitin, LC3B, Calpain 2, Hsp70). Both species had a similar reduction in metabolic rate at low PO2. However, F. heteroclitus was the more hypoxia-tolerant species based on a lower PO2 at which there was loss of equilibrium, perhaps due in part to a lower oxygen demand at all oxygen tensions. Despite the differences in hypoxia tolerance between the species, skeletal muscle molecular markers were largely insensitive to hypoxia, and there were few differences in responses between the species. Thus, the metabolic depression observed at the whole animal level appears to limit perturbations in skeletal muscle in both species during the hypoxia treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信