甲基转移酶 METTL3 通过 m6A 甲基化修饰调节 SH3BGR 的表达,在唐氏综合征相关的心脏发育过程中对细胞凋亡产生影响。

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Weili Shi, Rui Chen, Mingjie Zhou, Yunian Li, Yuwei Zhang, Jikui Wang, Bingtao Hao, Shixiu Liao
{"title":"甲基转移酶 METTL3 通过 m6A 甲基化修饰调节 SH3BGR 的表达,在唐氏综合征相关的心脏发育过程中对细胞凋亡产生影响。","authors":"Weili Shi, Rui Chen, Mingjie Zhou, Yunian Li, Yuwei Zhang, Jikui Wang, Bingtao Hao, Shixiu Liao","doi":"10.1038/s41420-024-02164-3","DOIUrl":null,"url":null,"abstract":"<p><p>Down syndrome (DS), caused by an additional chromosome 21, has a high risk of congenital heart defects (CHD), one of the primary causes of mortality in DS newborns. To elucidate the pathogenetic mechanisms underlying this condition, we explored the role of RNA m6A methylation, regulated by METTL3, in DS cardiac development and its impact on the expression of SH3BGR, a gene located at Down syndrome congenital heart disease (DS-CHD) minimal region. We analyzed DS fetal cardiac tissues to assess RNA m6A methylation levels and identify potential contributors. RNA sequencing was performed to detect differentially expressed genes in the same tissues. To further understand METTL3's function in heart development, we inactivated Mettl3 in the developing mouse heart to mimic the significantly reduced METTL3 observed in DS cardiac development. Additionally, human cardiomyocyte AC16 cells were used to investigate the molecular mechanism by which METTL3 regulates SH3BGR expression. Apoptosis was analyzed to evaluate METTL3's effect on heart development through SH3BGR regulation. Reduced m6A modification and decreased METTL3 expression were observed in human DS fetal hearts, along with a significant increase of SH3BGR expression. METTL3, through m6A modification, was found to regulate SH3BGR expression, by influencing mRNA stability. METTL3-deficient mouse embryos exhibited heart malformation with increased apoptosis, emphasizing its role in heart development. In DS hearts, METTL3 downregulation and SH3BGR upregulation, potentially orchestrated by abnormal m6A modification, contribute to gene dysregulation and apoptosis. This study reveals novel insights into DS cardiac pathology, highlighting the intricate role of METTL3 in DS congenital heart defects and presenting the m6A modification of SH3BGR as a potential therapeutic target.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"396"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377721/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methyltransferase METTL3 governs the modulation of SH3BGR expression through m6A methylation modification, imparting influence on apoptosis in the context of Down syndrome-associated cardiac development.\",\"authors\":\"Weili Shi, Rui Chen, Mingjie Zhou, Yunian Li, Yuwei Zhang, Jikui Wang, Bingtao Hao, Shixiu Liao\",\"doi\":\"10.1038/s41420-024-02164-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Down syndrome (DS), caused by an additional chromosome 21, has a high risk of congenital heart defects (CHD), one of the primary causes of mortality in DS newborns. To elucidate the pathogenetic mechanisms underlying this condition, we explored the role of RNA m6A methylation, regulated by METTL3, in DS cardiac development and its impact on the expression of SH3BGR, a gene located at Down syndrome congenital heart disease (DS-CHD) minimal region. We analyzed DS fetal cardiac tissues to assess RNA m6A methylation levels and identify potential contributors. RNA sequencing was performed to detect differentially expressed genes in the same tissues. To further understand METTL3's function in heart development, we inactivated Mettl3 in the developing mouse heart to mimic the significantly reduced METTL3 observed in DS cardiac development. Additionally, human cardiomyocyte AC16 cells were used to investigate the molecular mechanism by which METTL3 regulates SH3BGR expression. Apoptosis was analyzed to evaluate METTL3's effect on heart development through SH3BGR regulation. Reduced m6A modification and decreased METTL3 expression were observed in human DS fetal hearts, along with a significant increase of SH3BGR expression. METTL3, through m6A modification, was found to regulate SH3BGR expression, by influencing mRNA stability. METTL3-deficient mouse embryos exhibited heart malformation with increased apoptosis, emphasizing its role in heart development. In DS hearts, METTL3 downregulation and SH3BGR upregulation, potentially orchestrated by abnormal m6A modification, contribute to gene dysregulation and apoptosis. This study reveals novel insights into DS cardiac pathology, highlighting the intricate role of METTL3 in DS congenital heart defects and presenting the m6A modification of SH3BGR as a potential therapeutic target.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"10 1\",\"pages\":\"396\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02164-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02164-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

唐氏综合征(Down syndrome,DS)是由额外的 21 号染色体引起的,其先天性心脏缺陷(CHD)的风险很高,这也是 DS 新生儿死亡的主要原因之一。为了阐明这种疾病的发病机制,我们探讨了受 METTL3 调控的 RNA m6A 甲基化在 DS 心脏发育过程中的作用及其对 SH3BGR(一种位于唐氏综合征先天性心脏病(DS-CHD)最小区域的基因)表达的影响。我们分析了唐氏综合征胎儿的心脏组织,以评估 RNA m6A 甲基化水平并确定潜在的促成因素。我们还进行了 RNA 测序,以检测相同组织中差异表达的基因。为了进一步了解 METTL3 在心脏发育过程中的功能,我们在发育中的小鼠心脏中灭活了 Mettl3,以模拟在 DS 心脏发育过程中观察到的 METTL3 的显著减少。此外,我们还利用人体心肌细胞 AC16 细胞来研究 METTL3 调节 SH3BGR 表达的分子机制。通过分析细胞凋亡,评估了METTL3通过调节SH3BGR对心脏发育的影响。在人类 DS 胎儿心脏中观察到 m6A 修饰减少和 METTL3 表达降低,同时 SH3BGR 表达显著增加。研究发现,METTL3通过m6A修饰影响mRNA的稳定性,从而调控SH3BGR的表达。缺失 METTL3 的小鼠胚胎表现出心脏畸形,细胞凋亡增加,强调了它在心脏发育中的作用。在DS心脏中,METTL3下调和SH3BGR上调可能通过异常的m6A修饰协调,导致基因失调和细胞凋亡。这项研究揭示了DS心脏病理学的新见解,强调了METTL3在DS先天性心脏缺陷中的复杂作用,并将SH3BGR的m6A修饰作为一个潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Methyltransferase METTL3 governs the modulation of SH3BGR expression through m6A methylation modification, imparting influence on apoptosis in the context of Down syndrome-associated cardiac development.

Methyltransferase METTL3 governs the modulation of SH3BGR expression through m6A methylation modification, imparting influence on apoptosis in the context of Down syndrome-associated cardiac development.

Down syndrome (DS), caused by an additional chromosome 21, has a high risk of congenital heart defects (CHD), one of the primary causes of mortality in DS newborns. To elucidate the pathogenetic mechanisms underlying this condition, we explored the role of RNA m6A methylation, regulated by METTL3, in DS cardiac development and its impact on the expression of SH3BGR, a gene located at Down syndrome congenital heart disease (DS-CHD) minimal region. We analyzed DS fetal cardiac tissues to assess RNA m6A methylation levels and identify potential contributors. RNA sequencing was performed to detect differentially expressed genes in the same tissues. To further understand METTL3's function in heart development, we inactivated Mettl3 in the developing mouse heart to mimic the significantly reduced METTL3 observed in DS cardiac development. Additionally, human cardiomyocyte AC16 cells were used to investigate the molecular mechanism by which METTL3 regulates SH3BGR expression. Apoptosis was analyzed to evaluate METTL3's effect on heart development through SH3BGR regulation. Reduced m6A modification and decreased METTL3 expression were observed in human DS fetal hearts, along with a significant increase of SH3BGR expression. METTL3, through m6A modification, was found to regulate SH3BGR expression, by influencing mRNA stability. METTL3-deficient mouse embryos exhibited heart malformation with increased apoptosis, emphasizing its role in heart development. In DS hearts, METTL3 downregulation and SH3BGR upregulation, potentially orchestrated by abnormal m6A modification, contribute to gene dysregulation and apoptosis. This study reveals novel insights into DS cardiac pathology, highlighting the intricate role of METTL3 in DS congenital heart defects and presenting the m6A modification of SH3BGR as a potential therapeutic target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信