Maria Rosaria Tropea, Marcello Melone, Domenica Donatella Li Puma, Valeria Vacanti, Giuseppe Aceto, Bruno Bandiera, Roberta Carmela Trovato, Sebastiano Alfio Torrisi, Gian Marco Leggio, Agostino Palmeri, Marcello D'Ascenzo, Fiorenzo Conti, Claudio Grassi, Daniela Puzzo
{"title":"阻断多巴胺 D3 受体可改善海马突触功能,并挽救与年龄相关的认知表型。","authors":"Maria Rosaria Tropea, Marcello Melone, Domenica Donatella Li Puma, Valeria Vacanti, Giuseppe Aceto, Bruno Bandiera, Roberta Carmela Trovato, Sebastiano Alfio Torrisi, Gian Marco Leggio, Agostino Palmeri, Marcello D'Ascenzo, Fiorenzo Conti, Claudio Grassi, Daniela Puzzo","doi":"10.1111/acel.14291","DOIUrl":null,"url":null,"abstract":"<p><p>Dopamine D3 receptors (D3Rs) modulate neuronal activity in several brain regions including the hippocampus. Although previous studies reported that blocking D3Rs exerts pro-cognitive effects, their involvement in hippocampal synaptic function and memory in the healthy and aged brain has not been thoroughly investigated. We demonstrated that in adult wild type (WT) mice, D3R pharmacological blockade or genetic deletion as in D3 knock out (KO) mice, converted the weak form of long-term potentiation (LTP1) into the stronger long-lasting LTP (LTP2) via the cAMP/PKA pathway, and allowed the formation of long-term memory. D3R effects were mainly mediated by post-synaptic mechanisms as their blockade enhanced basal synaptic transmission (BST), AMPAR-mediated currents, mEPSC amplitude, and the expression of the post-synaptic proteins PSD-95, phospho(p)GluA1 and p-CREB. Consistently, electron microscopy revealed a prevalent expression of D3Rs in post-synaptic dendrites. Interestingly, with age, D3Rs decreased in axon terminals while maintaining their levels in post-synaptic dendrites. Indeed, in aged WT mice, blocking D3Rs reversed the impairment of LTP, BST, memory, post-synaptic protein expression, and PSD length. Notably, aged D3-KO mice did not exhibit synaptic and memory deficits. In conclusion, we demonstrated the fundamental role of D3Rs in hippocampal synaptic function and memory, and their potential as a therapeutic target to counteract the age-related hippocampal cognitive decline.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockade of dopamine D3 receptors improves hippocampal synaptic function and rescues age-related cognitive phenotype.\",\"authors\":\"Maria Rosaria Tropea, Marcello Melone, Domenica Donatella Li Puma, Valeria Vacanti, Giuseppe Aceto, Bruno Bandiera, Roberta Carmela Trovato, Sebastiano Alfio Torrisi, Gian Marco Leggio, Agostino Palmeri, Marcello D'Ascenzo, Fiorenzo Conti, Claudio Grassi, Daniela Puzzo\",\"doi\":\"10.1111/acel.14291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dopamine D3 receptors (D3Rs) modulate neuronal activity in several brain regions including the hippocampus. Although previous studies reported that blocking D3Rs exerts pro-cognitive effects, their involvement in hippocampal synaptic function and memory in the healthy and aged brain has not been thoroughly investigated. We demonstrated that in adult wild type (WT) mice, D3R pharmacological blockade or genetic deletion as in D3 knock out (KO) mice, converted the weak form of long-term potentiation (LTP1) into the stronger long-lasting LTP (LTP2) via the cAMP/PKA pathway, and allowed the formation of long-term memory. D3R effects were mainly mediated by post-synaptic mechanisms as their blockade enhanced basal synaptic transmission (BST), AMPAR-mediated currents, mEPSC amplitude, and the expression of the post-synaptic proteins PSD-95, phospho(p)GluA1 and p-CREB. Consistently, electron microscopy revealed a prevalent expression of D3Rs in post-synaptic dendrites. Interestingly, with age, D3Rs decreased in axon terminals while maintaining their levels in post-synaptic dendrites. Indeed, in aged WT mice, blocking D3Rs reversed the impairment of LTP, BST, memory, post-synaptic protein expression, and PSD length. Notably, aged D3-KO mice did not exhibit synaptic and memory deficits. In conclusion, we demonstrated the fundamental role of D3Rs in hippocampal synaptic function and memory, and their potential as a therapeutic target to counteract the age-related hippocampal cognitive decline.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14291\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14291","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Blockade of dopamine D3 receptors improves hippocampal synaptic function and rescues age-related cognitive phenotype.
Dopamine D3 receptors (D3Rs) modulate neuronal activity in several brain regions including the hippocampus. Although previous studies reported that blocking D3Rs exerts pro-cognitive effects, their involvement in hippocampal synaptic function and memory in the healthy and aged brain has not been thoroughly investigated. We demonstrated that in adult wild type (WT) mice, D3R pharmacological blockade or genetic deletion as in D3 knock out (KO) mice, converted the weak form of long-term potentiation (LTP1) into the stronger long-lasting LTP (LTP2) via the cAMP/PKA pathway, and allowed the formation of long-term memory. D3R effects were mainly mediated by post-synaptic mechanisms as their blockade enhanced basal synaptic transmission (BST), AMPAR-mediated currents, mEPSC amplitude, and the expression of the post-synaptic proteins PSD-95, phospho(p)GluA1 and p-CREB. Consistently, electron microscopy revealed a prevalent expression of D3Rs in post-synaptic dendrites. Interestingly, with age, D3Rs decreased in axon terminals while maintaining their levels in post-synaptic dendrites. Indeed, in aged WT mice, blocking D3Rs reversed the impairment of LTP, BST, memory, post-synaptic protein expression, and PSD length. Notably, aged D3-KO mice did not exhibit synaptic and memory deficits. In conclusion, we demonstrated the fundamental role of D3Rs in hippocampal synaptic function and memory, and their potential as a therapeutic target to counteract the age-related hippocampal cognitive decline.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.