掺孔基塔耶夫自旋液体的动铁磁性和拓扑磁子

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hui-Ke Jin, Wilhelm Kadow, Michael Knap, Johannes Knolle
{"title":"掺孔基塔耶夫自旋液体的动铁磁性和拓扑磁子","authors":"Hui-Ke Jin, Wilhelm Kadow, Michael Knap, Johannes Knolle","doi":"10.1038/s41535-024-00678-8","DOIUrl":null,"url":null,"abstract":"<p>We study the effect of hole doping on the Kitaev spin liquid (KSL) and find that for ferromagnetic (FM) Kitaev exchange <i>K</i> the system is very susceptible to the formation of a FM spin polarization. Through density matrix renormalization group simulations on finite systems, we uncover that the introduction of a single hole, corresponding to ≈1% hole doping for the system size we consider, with a hopping strength of just <i>t</i> ~ 0.28<i>K</i> is enough to disrupt fractionalization and polarize the spins in the [001] direction due to an order-by-disorder mechanism. Taking into account a material relevant FM anisotropic exchange <i>Γ</i> drives the polarization towards the [111] direction via a transition into a topological FM state with chiral magnon excitations. We develop a parton mean-field theory incorporating fermionic holons and bosonic magnons, which accounts for the doping induced FM phases and topological magnon excitations. We discuss experimental implications for Kitaev candidate materials.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic ferromagnetism and topological magnons of the hole-doped Kitaev spin liquid\",\"authors\":\"Hui-Ke Jin, Wilhelm Kadow, Michael Knap, Johannes Knolle\",\"doi\":\"10.1038/s41535-024-00678-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the effect of hole doping on the Kitaev spin liquid (KSL) and find that for ferromagnetic (FM) Kitaev exchange <i>K</i> the system is very susceptible to the formation of a FM spin polarization. Through density matrix renormalization group simulations on finite systems, we uncover that the introduction of a single hole, corresponding to ≈1% hole doping for the system size we consider, with a hopping strength of just <i>t</i> ~ 0.28<i>K</i> is enough to disrupt fractionalization and polarize the spins in the [001] direction due to an order-by-disorder mechanism. Taking into account a material relevant FM anisotropic exchange <i>Γ</i> drives the polarization towards the [111] direction via a transition into a topological FM state with chiral magnon excitations. We develop a parton mean-field theory incorporating fermionic holons and bosonic magnons, which accounts for the doping induced FM phases and topological magnon excitations. We discuss experimental implications for Kitaev candidate materials.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00678-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00678-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了空穴掺杂对基塔耶夫自旋液体(KSL)的影响,发现对于铁磁性(FM)基塔耶夫交换 K,该系统非常容易形成 FM 自旋极化。通过对有限系统进行密度矩阵重正化群模拟,我们发现,在我们所考虑的系统尺寸中,引入单个空穴(对应于≈1%的空穴掺杂),其跳跃强度仅为 t ~ 0.28K,就足以破坏分化,并由于逐阶失序机制而使自旋在 [001] 方向极化。考虑到与材料相关的调频各向异性交换Γ,通过过渡到具有手性磁子激发的拓扑调频态,将极化推向[111]方向。我们发展了一种包含费米子全子和玻色子磁子的粒子均场理论,它解释了掺杂诱导的调频态和拓扑磁子激发。我们讨论了基塔耶夫候选材料的实验意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kinetic ferromagnetism and topological magnons of the hole-doped Kitaev spin liquid

Kinetic ferromagnetism and topological magnons of the hole-doped Kitaev spin liquid

We study the effect of hole doping on the Kitaev spin liquid (KSL) and find that for ferromagnetic (FM) Kitaev exchange K the system is very susceptible to the formation of a FM spin polarization. Through density matrix renormalization group simulations on finite systems, we uncover that the introduction of a single hole, corresponding to ≈1% hole doping for the system size we consider, with a hopping strength of just t ~ 0.28K is enough to disrupt fractionalization and polarize the spins in the [001] direction due to an order-by-disorder mechanism. Taking into account a material relevant FM anisotropic exchange Γ drives the polarization towards the [111] direction via a transition into a topological FM state with chiral magnon excitations. We develop a parton mean-field theory incorporating fermionic holons and bosonic magnons, which accounts for the doping induced FM phases and topological magnon excitations. We discuss experimental implications for Kitaev candidate materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信