Hui-Ke Jin, Wilhelm Kadow, Michael Knap, Johannes Knolle
{"title":"掺孔基塔耶夫自旋液体的动铁磁性和拓扑磁子","authors":"Hui-Ke Jin, Wilhelm Kadow, Michael Knap, Johannes Knolle","doi":"10.1038/s41535-024-00678-8","DOIUrl":null,"url":null,"abstract":"<p>We study the effect of hole doping on the Kitaev spin liquid (KSL) and find that for ferromagnetic (FM) Kitaev exchange <i>K</i> the system is very susceptible to the formation of a FM spin polarization. Through density matrix renormalization group simulations on finite systems, we uncover that the introduction of a single hole, corresponding to ≈1% hole doping for the system size we consider, with a hopping strength of just <i>t</i> ~ 0.28<i>K</i> is enough to disrupt fractionalization and polarize the spins in the [001] direction due to an order-by-disorder mechanism. Taking into account a material relevant FM anisotropic exchange <i>Γ</i> drives the polarization towards the [111] direction via a transition into a topological FM state with chiral magnon excitations. We develop a parton mean-field theory incorporating fermionic holons and bosonic magnons, which accounts for the doping induced FM phases and topological magnon excitations. We discuss experimental implications for Kitaev candidate materials.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic ferromagnetism and topological magnons of the hole-doped Kitaev spin liquid\",\"authors\":\"Hui-Ke Jin, Wilhelm Kadow, Michael Knap, Johannes Knolle\",\"doi\":\"10.1038/s41535-024-00678-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the effect of hole doping on the Kitaev spin liquid (KSL) and find that for ferromagnetic (FM) Kitaev exchange <i>K</i> the system is very susceptible to the formation of a FM spin polarization. Through density matrix renormalization group simulations on finite systems, we uncover that the introduction of a single hole, corresponding to ≈1% hole doping for the system size we consider, with a hopping strength of just <i>t</i> ~ 0.28<i>K</i> is enough to disrupt fractionalization and polarize the spins in the [001] direction due to an order-by-disorder mechanism. Taking into account a material relevant FM anisotropic exchange <i>Γ</i> drives the polarization towards the [111] direction via a transition into a topological FM state with chiral magnon excitations. We develop a parton mean-field theory incorporating fermionic holons and bosonic magnons, which accounts for the doping induced FM phases and topological magnon excitations. We discuss experimental implications for Kitaev candidate materials.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00678-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00678-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了空穴掺杂对基塔耶夫自旋液体(KSL)的影响,发现对于铁磁性(FM)基塔耶夫交换 K,该系统非常容易形成 FM 自旋极化。通过对有限系统进行密度矩阵重正化群模拟,我们发现,在我们所考虑的系统尺寸中,引入单个空穴(对应于≈1%的空穴掺杂),其跳跃强度仅为 t ~ 0.28K,就足以破坏分化,并由于逐阶失序机制而使自旋在 [001] 方向极化。考虑到与材料相关的调频各向异性交换Γ,通过过渡到具有手性磁子激发的拓扑调频态,将极化推向[111]方向。我们发展了一种包含费米子全子和玻色子磁子的粒子均场理论,它解释了掺杂诱导的调频态和拓扑磁子激发。我们讨论了基塔耶夫候选材料的实验意义。
Kinetic ferromagnetism and topological magnons of the hole-doped Kitaev spin liquid
We study the effect of hole doping on the Kitaev spin liquid (KSL) and find that for ferromagnetic (FM) Kitaev exchange K the system is very susceptible to the formation of a FM spin polarization. Through density matrix renormalization group simulations on finite systems, we uncover that the introduction of a single hole, corresponding to ≈1% hole doping for the system size we consider, with a hopping strength of just t ~ 0.28K is enough to disrupt fractionalization and polarize the spins in the [001] direction due to an order-by-disorder mechanism. Taking into account a material relevant FM anisotropic exchange Γ drives the polarization towards the [111] direction via a transition into a topological FM state with chiral magnon excitations. We develop a parton mean-field theory incorporating fermionic holons and bosonic magnons, which accounts for the doping induced FM phases and topological magnon excitations. We discuss experimental implications for Kitaev candidate materials.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.