用于大规模机器类通信的通用多用户稀疏叠加传输

IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ming Hui;Xuewan Zhang;Jingjing Guo
{"title":"用于大规模机器类通信的通用多用户稀疏叠加传输","authors":"Ming Hui;Xuewan Zhang;Jingjing Guo","doi":"10.23919/JCN.2024.000029","DOIUrl":null,"url":null,"abstract":"To fulfill the connectivity demands in massive machine-type communications (mMTC), this paper investigates a generalized multi-user sparse superposition transmission (GMUSST) technology based on position index modulation. Due to the high computation complexity of maximum likelihood (ML) multi-user detection, a low complexity multi-path successive interference cancellation (MSIC) multi-user detector is introduced to achieve near-ML detector's block error ratio (BLER) performance. Furthermore, considering that each user is only concerned with their own transmitted signal in the downlink GMUSST system, we propose a minimum mean square error-based SIC (MMSE-SIC) detector, which can directly extract the user's transmission signal from the received superimposed signal of multiple users and is verified compared with MSIC detector. Simulation results show that the GMUSST can achieve better transmission reliability than the existing polar coded sparse code multiple access (PC-SCMA) in the short packet communication scenarios. Especially with the hybrid automatic repeat request mechanism, GMUSST requires fewer retransmissions to achieve the same BLER performance compared to PC-SCMA.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666071","citationCount":"0","resultStr":"{\"title\":\"Generalized multi-user sparse superposition transmission for massive machine-type communications\",\"authors\":\"Ming Hui;Xuewan Zhang;Jingjing Guo\",\"doi\":\"10.23919/JCN.2024.000029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To fulfill the connectivity demands in massive machine-type communications (mMTC), this paper investigates a generalized multi-user sparse superposition transmission (GMUSST) technology based on position index modulation. Due to the high computation complexity of maximum likelihood (ML) multi-user detection, a low complexity multi-path successive interference cancellation (MSIC) multi-user detector is introduced to achieve near-ML detector's block error ratio (BLER) performance. Furthermore, considering that each user is only concerned with their own transmitted signal in the downlink GMUSST system, we propose a minimum mean square error-based SIC (MMSE-SIC) detector, which can directly extract the user's transmission signal from the received superimposed signal of multiple users and is verified compared with MSIC detector. Simulation results show that the GMUSST can achieve better transmission reliability than the existing polar coded sparse code multiple access (PC-SCMA) in the short packet communication scenarios. Especially with the hybrid automatic repeat request mechanism, GMUSST requires fewer retransmissions to achieve the same BLER performance compared to PC-SCMA.\",\"PeriodicalId\":54864,\"journal\":{\"name\":\"Journal of Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666071/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666071/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了满足大规模机器型通信(mMTC)的连接需求,本文研究了一种基于位置索引调制的广义多用户稀疏叠加传输(GMUSST)技术。由于最大似然(ML)多用户检测的计算复杂度较高,本文引入了低复杂度的多路径连续干扰消除(MSIC)多用户检测器,以实现接近 ML 检测器的块误差比(BLER)性能。此外,考虑到在下行 GMUSST 系统中每个用户只关心自己的传输信号,我们提出了一种基于最小均方误差的 SIC(MMSE-SIC)检测器,它可以直接从接收到的多个用户的叠加信号中提取用户的传输信号,并与 MSIC 检测器进行了比较验证。仿真结果表明,与现有的极性编码稀疏码多址(PC-SCMA)相比,GMUSST 在短分组通信场景下能实现更好的传输可靠性。特别是在混合自动重复请求机制下,与 PC-SCMA 相比,GMUSST 需要更少的重传次数就能达到相同的 BLER 性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized multi-user sparse superposition transmission for massive machine-type communications
To fulfill the connectivity demands in massive machine-type communications (mMTC), this paper investigates a generalized multi-user sparse superposition transmission (GMUSST) technology based on position index modulation. Due to the high computation complexity of maximum likelihood (ML) multi-user detection, a low complexity multi-path successive interference cancellation (MSIC) multi-user detector is introduced to achieve near-ML detector's block error ratio (BLER) performance. Furthermore, considering that each user is only concerned with their own transmitted signal in the downlink GMUSST system, we propose a minimum mean square error-based SIC (MMSE-SIC) detector, which can directly extract the user's transmission signal from the received superimposed signal of multiple users and is verified compared with MSIC detector. Simulation results show that the GMUSST can achieve better transmission reliability than the existing polar coded sparse code multiple access (PC-SCMA) in the short packet communication scenarios. Especially with the hybrid automatic repeat request mechanism, GMUSST requires fewer retransmissions to achieve the same BLER performance compared to PC-SCMA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.60%
发文量
66
审稿时长
14.4 months
期刊介绍: The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信