{"title":"几乎分割映射、变换定理和光滑纤维定理","authors":"Hongzhi Huang , Xian-Tao Huang","doi":"10.1016/j.aim.2024.109914","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a notion, called generalized Reifenberg condition, under which we prove a smooth fibration theorem for collapsed manifolds with Ricci curvature bounded below, which gives a unified proof of smooth fibration theorems in many previous works (including the ones proved by Fukaya and Yamaguchi respectively). A key tool in the proof of this fibration theorem is the transformation technique for almost splitting maps, which originates from Cheeger-Naber (<span><span>[16]</span></span>) and Cheeger-Jiang-Naber (<span><span>[14]</span></span>). More precisely, we show that a transformation theorem of Cheeger-Jiang-Naber (see Proposition 7.7 in <span><span>[14]</span></span>) holds for possibly collapsed manifolds. Some other applications of the transformation theorems are given in this paper.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109914"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost splitting maps, transformation theorems and smooth fibration theorems\",\"authors\":\"Hongzhi Huang , Xian-Tao Huang\",\"doi\":\"10.1016/j.aim.2024.109914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a notion, called generalized Reifenberg condition, under which we prove a smooth fibration theorem for collapsed manifolds with Ricci curvature bounded below, which gives a unified proof of smooth fibration theorems in many previous works (including the ones proved by Fukaya and Yamaguchi respectively). A key tool in the proof of this fibration theorem is the transformation technique for almost splitting maps, which originates from Cheeger-Naber (<span><span>[16]</span></span>) and Cheeger-Jiang-Naber (<span><span>[14]</span></span>). More precisely, we show that a transformation theorem of Cheeger-Jiang-Naber (see Proposition 7.7 in <span><span>[14]</span></span>) holds for possibly collapsed manifolds. Some other applications of the transformation theorems are given in this paper.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109914\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004298\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004298","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Almost splitting maps, transformation theorems and smooth fibration theorems
In this paper, we introduce a notion, called generalized Reifenberg condition, under which we prove a smooth fibration theorem for collapsed manifolds with Ricci curvature bounded below, which gives a unified proof of smooth fibration theorems in many previous works (including the ones proved by Fukaya and Yamaguchi respectively). A key tool in the proof of this fibration theorem is the transformation technique for almost splitting maps, which originates from Cheeger-Naber ([16]) and Cheeger-Jiang-Naber ([14]). More precisely, we show that a transformation theorem of Cheeger-Jiang-Naber (see Proposition 7.7 in [14]) holds for possibly collapsed manifolds. Some other applications of the transformation theorems are given in this paper.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.