Zakia Khatun , Halldór Jónsson Jr. , Mariella Tsirilaki , Nicola Maffulli , Francesco Oliva , Pauline Daval , Francesco Tortorella , Paolo Gargiulo
{"title":"超越像素:通过传统机器学习和图卷积网络进行基于超像素的磁共振成像分割","authors":"Zakia Khatun , Halldór Jónsson Jr. , Mariella Tsirilaki , Nicola Maffulli , Francesco Oliva , Pauline Daval , Francesco Tortorella , Paolo Gargiulo","doi":"10.1016/j.cmpb.2024.108398","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><p>Tendon segmentation is crucial for studying tendon-related pathologies like tendinopathy, tendinosis, etc. This step further enables detailed analysis of specific tendon regions using automated or semi-automated methods. This study specifically aims at the segmentation of Achilles tendon, the largest tendon in the human body.</p></div><div><h3>Methods:</h3><p>This study proposes a comprehensive end-to-end tendon segmentation module composed of a preliminary superpixel-based coarse segmentation preceding the final segmentation task. The final segmentation results are obtained through two distinct approaches. In the first approach, the coarsely generated superpixels are subjected to classification using Random Forest (RF) and Support Vector Machine (SVM) classifiers to classify whether each superpixel belongs to a tendon class or not (resulting in tendon segmentation). In the second approach, the arrangements of superpixels are converted to graphs instead of being treated as conventional image grids. This classification process uses a graph-based convolutional network (GCN) to determine whether each superpixel corresponds to a tendon class or not.</p></div><div><h3>Results:</h3><p>All experiments are conducted on a custom-made ankle MRI dataset. The dataset comprises 76 subjects and is divided into two sets: one for training (Dataset 1, trained and evaluated using leave-one-group-out cross-validation) and the other as unseen test data (Dataset 2). Using our first approach, the final test AUC (Area Under the ROC Curve) scores using RF and SVM classifiers on the test data (Dataset 2) are 0.992 and 0.987, respectively, with sensitivities of 0.904 and 0.966. On the other hand, using our second approach (GCN-based node classification), the AUC score for the test set is 0.933 with a sensitivity of 0.899.</p></div><div><h3>Conclusions:</h3><p>Our proposed pipeline demonstrates the efficacy of employing superpixel generation as a coarse segmentation technique for the final tendon segmentation. Whether utilizing RF, SVM-based superpixel classification, or GCN-based classification for tendon segmentation, our system consistently achieves commendable AUC scores, especially the non-graph-based approach. Given the limited dataset, our graph-based method did not perform as well as non-graph-based superpixel classifications; however, the results obtained provide valuable insights into how well the models can distinguish between tendons and non-tendons. This opens up opportunities for further exploration and improvement.</p></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"256 ","pages":"Article 108398"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169260724003912/pdfft?md5=ec546df96619be9e2501c6602cc6ef74&pid=1-s2.0-S0169260724003912-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Beyond pixel: Superpixel-based MRI segmentation through traditional machine learning and graph convolutional network\",\"authors\":\"Zakia Khatun , Halldór Jónsson Jr. , Mariella Tsirilaki , Nicola Maffulli , Francesco Oliva , Pauline Daval , Francesco Tortorella , Paolo Gargiulo\",\"doi\":\"10.1016/j.cmpb.2024.108398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><p>Tendon segmentation is crucial for studying tendon-related pathologies like tendinopathy, tendinosis, etc. This step further enables detailed analysis of specific tendon regions using automated or semi-automated methods. This study specifically aims at the segmentation of Achilles tendon, the largest tendon in the human body.</p></div><div><h3>Methods:</h3><p>This study proposes a comprehensive end-to-end tendon segmentation module composed of a preliminary superpixel-based coarse segmentation preceding the final segmentation task. The final segmentation results are obtained through two distinct approaches. In the first approach, the coarsely generated superpixels are subjected to classification using Random Forest (RF) and Support Vector Machine (SVM) classifiers to classify whether each superpixel belongs to a tendon class or not (resulting in tendon segmentation). In the second approach, the arrangements of superpixels are converted to graphs instead of being treated as conventional image grids. This classification process uses a graph-based convolutional network (GCN) to determine whether each superpixel corresponds to a tendon class or not.</p></div><div><h3>Results:</h3><p>All experiments are conducted on a custom-made ankle MRI dataset. The dataset comprises 76 subjects and is divided into two sets: one for training (Dataset 1, trained and evaluated using leave-one-group-out cross-validation) and the other as unseen test data (Dataset 2). Using our first approach, the final test AUC (Area Under the ROC Curve) scores using RF and SVM classifiers on the test data (Dataset 2) are 0.992 and 0.987, respectively, with sensitivities of 0.904 and 0.966. On the other hand, using our second approach (GCN-based node classification), the AUC score for the test set is 0.933 with a sensitivity of 0.899.</p></div><div><h3>Conclusions:</h3><p>Our proposed pipeline demonstrates the efficacy of employing superpixel generation as a coarse segmentation technique for the final tendon segmentation. Whether utilizing RF, SVM-based superpixel classification, or GCN-based classification for tendon segmentation, our system consistently achieves commendable AUC scores, especially the non-graph-based approach. Given the limited dataset, our graph-based method did not perform as well as non-graph-based superpixel classifications; however, the results obtained provide valuable insights into how well the models can distinguish between tendons and non-tendons. This opens up opportunities for further exploration and improvement.</p></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"256 \",\"pages\":\"Article 108398\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169260724003912/pdfft?md5=ec546df96619be9e2501c6602cc6ef74&pid=1-s2.0-S0169260724003912-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724003912\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724003912","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Beyond pixel: Superpixel-based MRI segmentation through traditional machine learning and graph convolutional network
Background and Objective:
Tendon segmentation is crucial for studying tendon-related pathologies like tendinopathy, tendinosis, etc. This step further enables detailed analysis of specific tendon regions using automated or semi-automated methods. This study specifically aims at the segmentation of Achilles tendon, the largest tendon in the human body.
Methods:
This study proposes a comprehensive end-to-end tendon segmentation module composed of a preliminary superpixel-based coarse segmentation preceding the final segmentation task. The final segmentation results are obtained through two distinct approaches. In the first approach, the coarsely generated superpixels are subjected to classification using Random Forest (RF) and Support Vector Machine (SVM) classifiers to classify whether each superpixel belongs to a tendon class or not (resulting in tendon segmentation). In the second approach, the arrangements of superpixels are converted to graphs instead of being treated as conventional image grids. This classification process uses a graph-based convolutional network (GCN) to determine whether each superpixel corresponds to a tendon class or not.
Results:
All experiments are conducted on a custom-made ankle MRI dataset. The dataset comprises 76 subjects and is divided into two sets: one for training (Dataset 1, trained and evaluated using leave-one-group-out cross-validation) and the other as unseen test data (Dataset 2). Using our first approach, the final test AUC (Area Under the ROC Curve) scores using RF and SVM classifiers on the test data (Dataset 2) are 0.992 and 0.987, respectively, with sensitivities of 0.904 and 0.966. On the other hand, using our second approach (GCN-based node classification), the AUC score for the test set is 0.933 with a sensitivity of 0.899.
Conclusions:
Our proposed pipeline demonstrates the efficacy of employing superpixel generation as a coarse segmentation technique for the final tendon segmentation. Whether utilizing RF, SVM-based superpixel classification, or GCN-based classification for tendon segmentation, our system consistently achieves commendable AUC scores, especially the non-graph-based approach. Given the limited dataset, our graph-based method did not perform as well as non-graph-based superpixel classifications; however, the results obtained provide valuable insights into how well the models can distinguish between tendons and non-tendons. This opens up opportunities for further exploration and improvement.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.