Mohammad Reza Keyvanpour , Yasaman Asghari , Soheila Mehrmolaei
{"title":"HEnsem_DTIs:药物-靶点相互作用预测的异质集合学习模型","authors":"Mohammad Reza Keyvanpour , Yasaman Asghari , Soheila Mehrmolaei","doi":"10.1016/j.chemolab.2024.105224","DOIUrl":null,"url":null,"abstract":"<div><p>Drug discovery is the process by which a drug is discovered. Drug-target interactions prediction is a major part of drug discovery. Unfortunately, producing new drugs is time-consuming and expensive; Because it requires a lot of human and laboratory resources. Recently, predictions have been made using computational methods to solve these problems and prevent blindly examining all interactions. Various experiences using computational methods show that no single algorithm can be suitable for all applications; Hence, ensemble learning is expressed. Although various ensemble methods have been proposed, it is still not easy to find a suitable ensemble method for a particular dataset. In general, the existing algorithms in aggregation and combination method are selected manually based on experience. Reinforcement learning can be one way to meet this challenge. High-dimensional feature space and class imbalance are among the challenges of drug-target interactions prediction. This paper proposes HEnsem_DTIs, a heterogeneous ensemble model, for predicting drug-target interactions using dimensionality reduction and concepts of recommender systems to address these challenges. HEnsem_DTIs is configured with reinforcement learning. Dimensionality reduction is applied to handle the challenge of high-dimensional feature space and recommender systems to improve under-sampling and solve the class imbalance challenge. Six datasets are used to evaluate the proposed model; Results of the evaluation on datasets show that HEnsem_DTIs works better than other models in this field. Results of evaluation of the proposed model on the first dataset using 10-fold cross-validation experiments show the amount of sensitivity 0.896, specificity 0.954, GM 0.924, AUC 0.930 and AUPR 0.935.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"253 ","pages":"Article 105224"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HEnsem_DTIs: A heterogeneous ensemble learning model for drug-target interactions prediction\",\"authors\":\"Mohammad Reza Keyvanpour , Yasaman Asghari , Soheila Mehrmolaei\",\"doi\":\"10.1016/j.chemolab.2024.105224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drug discovery is the process by which a drug is discovered. Drug-target interactions prediction is a major part of drug discovery. Unfortunately, producing new drugs is time-consuming and expensive; Because it requires a lot of human and laboratory resources. Recently, predictions have been made using computational methods to solve these problems and prevent blindly examining all interactions. Various experiences using computational methods show that no single algorithm can be suitable for all applications; Hence, ensemble learning is expressed. Although various ensemble methods have been proposed, it is still not easy to find a suitable ensemble method for a particular dataset. In general, the existing algorithms in aggregation and combination method are selected manually based on experience. Reinforcement learning can be one way to meet this challenge. High-dimensional feature space and class imbalance are among the challenges of drug-target interactions prediction. This paper proposes HEnsem_DTIs, a heterogeneous ensemble model, for predicting drug-target interactions using dimensionality reduction and concepts of recommender systems to address these challenges. HEnsem_DTIs is configured with reinforcement learning. Dimensionality reduction is applied to handle the challenge of high-dimensional feature space and recommender systems to improve under-sampling and solve the class imbalance challenge. Six datasets are used to evaluate the proposed model; Results of the evaluation on datasets show that HEnsem_DTIs works better than other models in this field. Results of evaluation of the proposed model on the first dataset using 10-fold cross-validation experiments show the amount of sensitivity 0.896, specificity 0.954, GM 0.924, AUC 0.930 and AUPR 0.935.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"253 \",\"pages\":\"Article 105224\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001643\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001643","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
HEnsem_DTIs: A heterogeneous ensemble learning model for drug-target interactions prediction
Drug discovery is the process by which a drug is discovered. Drug-target interactions prediction is a major part of drug discovery. Unfortunately, producing new drugs is time-consuming and expensive; Because it requires a lot of human and laboratory resources. Recently, predictions have been made using computational methods to solve these problems and prevent blindly examining all interactions. Various experiences using computational methods show that no single algorithm can be suitable for all applications; Hence, ensemble learning is expressed. Although various ensemble methods have been proposed, it is still not easy to find a suitable ensemble method for a particular dataset. In general, the existing algorithms in aggregation and combination method are selected manually based on experience. Reinforcement learning can be one way to meet this challenge. High-dimensional feature space and class imbalance are among the challenges of drug-target interactions prediction. This paper proposes HEnsem_DTIs, a heterogeneous ensemble model, for predicting drug-target interactions using dimensionality reduction and concepts of recommender systems to address these challenges. HEnsem_DTIs is configured with reinforcement learning. Dimensionality reduction is applied to handle the challenge of high-dimensional feature space and recommender systems to improve under-sampling and solve the class imbalance challenge. Six datasets are used to evaluate the proposed model; Results of the evaluation on datasets show that HEnsem_DTIs works better than other models in this field. Results of evaluation of the proposed model on the first dataset using 10-fold cross-validation experiments show the amount of sensitivity 0.896, specificity 0.954, GM 0.924, AUC 0.930 and AUPR 0.935.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.