人工智能生成的目标和膀胱癌在线自适应放疗中观察者之间的差异

IF 3.4 Q2 ONCOLOGY
Lina M. Åström , Patrik Sibolt , Hannah Chamberlin , Eva Serup-Hansen , Claus E. Andersen , Marcel van Herk , Lene S. Mouritsen , Marianne C. Aznar , Claus P. Behrens
{"title":"人工智能生成的目标和膀胱癌在线自适应放疗中观察者之间的差异","authors":"Lina M. Åström ,&nbsp;Patrik Sibolt ,&nbsp;Hannah Chamberlin ,&nbsp;Eva Serup-Hansen ,&nbsp;Claus E. Andersen ,&nbsp;Marcel van Herk ,&nbsp;Lene S. Mouritsen ,&nbsp;Marianne C. Aznar ,&nbsp;Claus P. Behrens","doi":"10.1016/j.phro.2024.100640","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Daily target re-delineation in online adaptive radiotherapy (oART) introduces uncertainty. The aim of this study was to evaluate artificial intelligence (AI) generated contours and inter-observer target variation among radiotherapy technicians in cone-beam CT (CBCT) guided oART of bladder cancer.</p></div><div><h3>Materials and methods</h3><p>For each of 10 consecutive patients treated with oART for bladder cancer, one CBCT was randomly selected and retrospectively included. The bladder (CTV-T) was AI-segmented (CTV-T<sub>AI</sub>). Seven radiotherapy technicians independently reviewed and edited CTV-T<sub>AI</sub>, generating CTV-T<sub>ADP</sub>. Contours were benchmarked against a ground truth contour (CTV-T<sub>GT</sub>) delineated blindly from scratch. CTV-T<sub>ADP</sub> and CTV-T<sub>AI</sub> were compared to CTV-T<sub>GT</sub> using volume, dice similarity coefficient, and bidirectional local distance. Dose coverage (D<sub>99%</sub>&gt;95 %) of CTV-T<sub>GT</sub> was evaluated for treatment plans optimized for CTV-T<sub>AI</sub> and CTV-T<sub>ADP</sub> with clinical margins. Inter-observer variation among CTV-T<sub>ADP</sub> was assessed using coefficient of variation and generalized conformity index.</p></div><div><h3>Results</h3><p>CTV-T<sub>GT</sub> ranged from 48.7 cm<sup>3</sup> to 211.6 cm<sup>3</sup>. The median [range] volume difference was 4.5 [−17.8, 42.4] cm<sup>3</sup> for CTV-T<sub>ADP</sub> and −15.5 [−54.2, 4.3] cm<sup>3</sup> for CTV-T<sub>AI</sub>, compared to CTV-T<sub>GT</sub>. Corresponding dice similarity coefficients were 0.87 [0.71, 0.95] and 0.84 [0.64, 0.95]. CTV-T<sub>GT</sub> was adequately covered in 68/70 plans optimized on CTV-T<sub>ADP</sub> and in 6/10 plans optimized on CTV-T<sub>AI</sub> with clinical margins. The median [range] coefficient of variation was 0.08 [0.05, 0.11] and generalized conformity index was 0.78 [0.71, 0.88] among CTV-T<sub>ADP</sub>.</p></div><div><h3>Conclusions</h3><p>Target re-delineation in CBCT-guided oART of bladder cancer demonstrated non-isotropic inter-observer variation. Manual adjustment of AI-generated contours was necessary to cover ground truth targets.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001106/pdfft?md5=65ea09c6823d780c0e3cf276f0b90698&pid=1-s2.0-S2405631624001106-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-generated targets and inter-observer variation in online adaptive radiotherapy of bladder cancer\",\"authors\":\"Lina M. Åström ,&nbsp;Patrik Sibolt ,&nbsp;Hannah Chamberlin ,&nbsp;Eva Serup-Hansen ,&nbsp;Claus E. Andersen ,&nbsp;Marcel van Herk ,&nbsp;Lene S. Mouritsen ,&nbsp;Marianne C. Aznar ,&nbsp;Claus P. Behrens\",\"doi\":\"10.1016/j.phro.2024.100640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>Daily target re-delineation in online adaptive radiotherapy (oART) introduces uncertainty. The aim of this study was to evaluate artificial intelligence (AI) generated contours and inter-observer target variation among radiotherapy technicians in cone-beam CT (CBCT) guided oART of bladder cancer.</p></div><div><h3>Materials and methods</h3><p>For each of 10 consecutive patients treated with oART for bladder cancer, one CBCT was randomly selected and retrospectively included. The bladder (CTV-T) was AI-segmented (CTV-T<sub>AI</sub>). Seven radiotherapy technicians independently reviewed and edited CTV-T<sub>AI</sub>, generating CTV-T<sub>ADP</sub>. Contours were benchmarked against a ground truth contour (CTV-T<sub>GT</sub>) delineated blindly from scratch. CTV-T<sub>ADP</sub> and CTV-T<sub>AI</sub> were compared to CTV-T<sub>GT</sub> using volume, dice similarity coefficient, and bidirectional local distance. Dose coverage (D<sub>99%</sub>&gt;95 %) of CTV-T<sub>GT</sub> was evaluated for treatment plans optimized for CTV-T<sub>AI</sub> and CTV-T<sub>ADP</sub> with clinical margins. Inter-observer variation among CTV-T<sub>ADP</sub> was assessed using coefficient of variation and generalized conformity index.</p></div><div><h3>Results</h3><p>CTV-T<sub>GT</sub> ranged from 48.7 cm<sup>3</sup> to 211.6 cm<sup>3</sup>. The median [range] volume difference was 4.5 [−17.8, 42.4] cm<sup>3</sup> for CTV-T<sub>ADP</sub> and −15.5 [−54.2, 4.3] cm<sup>3</sup> for CTV-T<sub>AI</sub>, compared to CTV-T<sub>GT</sub>. Corresponding dice similarity coefficients were 0.87 [0.71, 0.95] and 0.84 [0.64, 0.95]. CTV-T<sub>GT</sub> was adequately covered in 68/70 plans optimized on CTV-T<sub>ADP</sub> and in 6/10 plans optimized on CTV-T<sub>AI</sub> with clinical margins. The median [range] coefficient of variation was 0.08 [0.05, 0.11] and generalized conformity index was 0.78 [0.71, 0.88] among CTV-T<sub>ADP</sub>.</p></div><div><h3>Conclusions</h3><p>Target re-delineation in CBCT-guided oART of bladder cancer demonstrated non-isotropic inter-observer variation. Manual adjustment of AI-generated contours was necessary to cover ground truth targets.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624001106/pdfft?md5=65ea09c6823d780c0e3cf276f0b90698&pid=1-s2.0-S2405631624001106-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624001106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的在线自适应放射治疗(oART)中的每日目标重新划定会带来不确定性。本研究旨在评估人工智能(AI)生成的轮廓和锥束 CT(CBCT)引导的膀胱癌 oART 中放疗技术人员之间的目标差异。膀胱(CTV-T)进行了AI分割(CTV-TAI)。七名放射治疗技术人员独立审查和编辑 CTV-TAI,生成 CTV-TADP。等值线以从头开始盲目划定的地面真实等值线(CTV-TGT)为基准。使用体积、骰子相似系数和双向局部距离将 CTV-TADP 和 CTV-TAI 与 CTV-TGT 进行比较。针对临床边缘为 CTV-TAI 和 CTV-TADP 优化的治疗方案,评估了 CTV-TGT 的剂量覆盖率(D99%>95%)。使用变异系数和广义符合性指数评估了 CTV-TADP 的观察者间差异。与CTV-TGT相比,CTV-TADP和CTV-TAI的体积差异中位数[范围]分别为4.5 [-17.8, 42.4] cm3和-15.5 [-54.2, 4.3] cm3。相应的骰子相似系数分别为 0.87 [0.71, 0.95] 和 0.84 [0.64, 0.95]。在 68/70 个根据 CTV-TADP 优化的计划和 6/10 个根据 CTV-TAI 优化的计划中,CTV-TGT 被充分覆盖,并有临床边缘。CTV-TADP的中位[范围]变异系数为0.08 [0.05, 0.11],广义符合性指数为0.78 [0.71, 0.88]。有必要对人工智能生成的轮廓进行手动调整,以覆盖地面实况目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-generated targets and inter-observer variation in online adaptive radiotherapy of bladder cancer

Background and purpose

Daily target re-delineation in online adaptive radiotherapy (oART) introduces uncertainty. The aim of this study was to evaluate artificial intelligence (AI) generated contours and inter-observer target variation among radiotherapy technicians in cone-beam CT (CBCT) guided oART of bladder cancer.

Materials and methods

For each of 10 consecutive patients treated with oART for bladder cancer, one CBCT was randomly selected and retrospectively included. The bladder (CTV-T) was AI-segmented (CTV-TAI). Seven radiotherapy technicians independently reviewed and edited CTV-TAI, generating CTV-TADP. Contours were benchmarked against a ground truth contour (CTV-TGT) delineated blindly from scratch. CTV-TADP and CTV-TAI were compared to CTV-TGT using volume, dice similarity coefficient, and bidirectional local distance. Dose coverage (D99%>95 %) of CTV-TGT was evaluated for treatment plans optimized for CTV-TAI and CTV-TADP with clinical margins. Inter-observer variation among CTV-TADP was assessed using coefficient of variation and generalized conformity index.

Results

CTV-TGT ranged from 48.7 cm3 to 211.6 cm3. The median [range] volume difference was 4.5 [−17.8, 42.4] cm3 for CTV-TADP and −15.5 [−54.2, 4.3] cm3 for CTV-TAI, compared to CTV-TGT. Corresponding dice similarity coefficients were 0.87 [0.71, 0.95] and 0.84 [0.64, 0.95]. CTV-TGT was adequately covered in 68/70 plans optimized on CTV-TADP and in 6/10 plans optimized on CTV-TAI with clinical margins. The median [range] coefficient of variation was 0.08 [0.05, 0.11] and generalized conformity index was 0.78 [0.71, 0.88] among CTV-TADP.

Conclusions

Target re-delineation in CBCT-guided oART of bladder cancer demonstrated non-isotropic inter-observer variation. Manual adjustment of AI-generated contours was necessary to cover ground truth targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信