{"title":"从 MLS 点云绘制大规模车道图的基准方法和数据集","authors":"","doi":"10.1016/j.jag.2024.104139","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate lane maps with semantics are crucial for various applications, such as high-definition maps (HD Maps), intelligent transportation systems (ITS), and digital twins. Manual annotation of lanes is labor-intensive and costly, prompting researchers to explore automatic lane extraction methods. This paper presents an end-to-end large-scale lane mapping method that considers both lane geometry and semantics. This study represents lane markings as polylines with uniformly sampled points and associated semantics, allowing for adaptation to varying lane shapes. Additionally, we propose an end-to-end network to extract lane polylines from mobile laser scanning (MLS) data, enabling the inference of vectorized lane instances without complex post-processing. The network consists of three components: a feature encoder, a column proposal generator, and a lane information decoder. The feature encoder encodes textual and structural information of lane markings to enhance the method’s robustness to data imperfections, such as varying lane intensity, uneven point density, and occlusion-induced incomplete data. The column proposal generator generates regions of interest for the subsequent decoder. Leveraging the embedded multi-scale features from the feature encoder, the lane decoder effectively predicts lane polylines and their associated semantics without requiring step-by-step conditional inference. Comprehensive experiments conducted on three lane datasets have demonstrated the performance of the proposed method, even in the presence of incomplete data and complex lane topology. Furthermore, the datasets used in this work, including source ground points, generated bird’s eye view (BEV) images, and annotations, will be publicly available with the publication of the paper. The code and dataset will be accessible through <span><span>here</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156984322400493X/pdfft?md5=d68dcec273c41a425a3f022365adcf23&pid=1-s2.0-S156984322400493X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A benchmark approach and dataset for large-scale lane mapping from MLS point clouds\",\"authors\":\"\",\"doi\":\"10.1016/j.jag.2024.104139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate lane maps with semantics are crucial for various applications, such as high-definition maps (HD Maps), intelligent transportation systems (ITS), and digital twins. Manual annotation of lanes is labor-intensive and costly, prompting researchers to explore automatic lane extraction methods. This paper presents an end-to-end large-scale lane mapping method that considers both lane geometry and semantics. This study represents lane markings as polylines with uniformly sampled points and associated semantics, allowing for adaptation to varying lane shapes. Additionally, we propose an end-to-end network to extract lane polylines from mobile laser scanning (MLS) data, enabling the inference of vectorized lane instances without complex post-processing. The network consists of three components: a feature encoder, a column proposal generator, and a lane information decoder. The feature encoder encodes textual and structural information of lane markings to enhance the method’s robustness to data imperfections, such as varying lane intensity, uneven point density, and occlusion-induced incomplete data. The column proposal generator generates regions of interest for the subsequent decoder. Leveraging the embedded multi-scale features from the feature encoder, the lane decoder effectively predicts lane polylines and their associated semantics without requiring step-by-step conditional inference. Comprehensive experiments conducted on three lane datasets have demonstrated the performance of the proposed method, even in the presence of incomplete data and complex lane topology. Furthermore, the datasets used in this work, including source ground points, generated bird’s eye view (BEV) images, and annotations, will be publicly available with the publication of the paper. The code and dataset will be accessible through <span><span>here</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S156984322400493X/pdfft?md5=d68dcec273c41a425a3f022365adcf23&pid=1-s2.0-S156984322400493X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156984322400493X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156984322400493X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
A benchmark approach and dataset for large-scale lane mapping from MLS point clouds
Accurate lane maps with semantics are crucial for various applications, such as high-definition maps (HD Maps), intelligent transportation systems (ITS), and digital twins. Manual annotation of lanes is labor-intensive and costly, prompting researchers to explore automatic lane extraction methods. This paper presents an end-to-end large-scale lane mapping method that considers both lane geometry and semantics. This study represents lane markings as polylines with uniformly sampled points and associated semantics, allowing for adaptation to varying lane shapes. Additionally, we propose an end-to-end network to extract lane polylines from mobile laser scanning (MLS) data, enabling the inference of vectorized lane instances without complex post-processing. The network consists of three components: a feature encoder, a column proposal generator, and a lane information decoder. The feature encoder encodes textual and structural information of lane markings to enhance the method’s robustness to data imperfections, such as varying lane intensity, uneven point density, and occlusion-induced incomplete data. The column proposal generator generates regions of interest for the subsequent decoder. Leveraging the embedded multi-scale features from the feature encoder, the lane decoder effectively predicts lane polylines and their associated semantics without requiring step-by-step conditional inference. Comprehensive experiments conducted on three lane datasets have demonstrated the performance of the proposed method, even in the presence of incomplete data and complex lane topology. Furthermore, the datasets used in this work, including source ground points, generated bird’s eye view (BEV) images, and annotations, will be publicly available with the publication of the paper. The code and dataset will be accessible through here.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.