{"title":"塑性变形能力和断裂行为对铁/镍界面增韧机制的影响","authors":"Sien Liu, Shoichi Nambu","doi":"10.1016/j.ijplas.2024.104107","DOIUrl":null,"url":null,"abstract":"<div><p>Fracture at interface causes plastic deformation in the vicinity region. Conventional plastic energy dissipation theory indicates that ductile vicinity toughens the interface by absorbing plastic deformation energy. However, the microstructure in the vicinity directly affects local plastic deformability and fracture behaviour, implying a more complicated toughening mechanism. In this study, the effect of microstructure and hardness on fracture behaviour of Fe/Ni interface was investigated. By experimental approach, interfaces with and without dynamic recrystallization (DRX) were fabricated by controlling the bonding conditions. It showed that compression-induced plastic deformation is the main source of the hardening behaviour in the vicinity. Moreover, the interfaces with hardened DRX vicinities exhibited improved fracture toughness, which is inconsistent with the plastic energy dissipation theory. To clarify this observation, the crystal plasticity finite element method (CPFEM) approach was employed to distinguish the effects of plastic deformation and interfacial microstructure. The result showed that although higher plastic deformability in the vicinity absorbs more dissipated plastic energy, severe stress concentration at the interface leads to early fracture and poor toughness. On the other hand, the interfacial hardened DRXed grains disperse interfacial stress distribution and provide potential sub-crack sites. A combined result of uniform plastic deformation and fracture energy dissipation is responsible for the improved toughness at interfaces with DRXed grains.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104107"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0749641924002341/pdfft?md5=4bc3d8f839280583f92c5e9683f9c753&pid=1-s2.0-S0749641924002341-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of plastic deformability and fracture behaviour on interfacial toughening mechanism at Fe/Ni interfaces\",\"authors\":\"Sien Liu, Shoichi Nambu\",\"doi\":\"10.1016/j.ijplas.2024.104107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fracture at interface causes plastic deformation in the vicinity region. Conventional plastic energy dissipation theory indicates that ductile vicinity toughens the interface by absorbing plastic deformation energy. However, the microstructure in the vicinity directly affects local plastic deformability and fracture behaviour, implying a more complicated toughening mechanism. In this study, the effect of microstructure and hardness on fracture behaviour of Fe/Ni interface was investigated. By experimental approach, interfaces with and without dynamic recrystallization (DRX) were fabricated by controlling the bonding conditions. It showed that compression-induced plastic deformation is the main source of the hardening behaviour in the vicinity. Moreover, the interfaces with hardened DRX vicinities exhibited improved fracture toughness, which is inconsistent with the plastic energy dissipation theory. To clarify this observation, the crystal plasticity finite element method (CPFEM) approach was employed to distinguish the effects of plastic deformation and interfacial microstructure. The result showed that although higher plastic deformability in the vicinity absorbs more dissipated plastic energy, severe stress concentration at the interface leads to early fracture and poor toughness. On the other hand, the interfacial hardened DRXed grains disperse interfacial stress distribution and provide potential sub-crack sites. A combined result of uniform plastic deformation and fracture energy dissipation is responsible for the improved toughness at interfaces with DRXed grains.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"181 \",\"pages\":\"Article 104107\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0749641924002341/pdfft?md5=4bc3d8f839280583f92c5e9683f9c753&pid=1-s2.0-S0749641924002341-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924002341\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002341","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of plastic deformability and fracture behaviour on interfacial toughening mechanism at Fe/Ni interfaces
Fracture at interface causes plastic deformation in the vicinity region. Conventional plastic energy dissipation theory indicates that ductile vicinity toughens the interface by absorbing plastic deformation energy. However, the microstructure in the vicinity directly affects local plastic deformability and fracture behaviour, implying a more complicated toughening mechanism. In this study, the effect of microstructure and hardness on fracture behaviour of Fe/Ni interface was investigated. By experimental approach, interfaces with and without dynamic recrystallization (DRX) were fabricated by controlling the bonding conditions. It showed that compression-induced plastic deformation is the main source of the hardening behaviour in the vicinity. Moreover, the interfaces with hardened DRX vicinities exhibited improved fracture toughness, which is inconsistent with the plastic energy dissipation theory. To clarify this observation, the crystal plasticity finite element method (CPFEM) approach was employed to distinguish the effects of plastic deformation and interfacial microstructure. The result showed that although higher plastic deformability in the vicinity absorbs more dissipated plastic energy, severe stress concentration at the interface leads to early fracture and poor toughness. On the other hand, the interfacial hardened DRXed grains disperse interfacial stress distribution and provide potential sub-crack sites. A combined result of uniform plastic deformation and fracture energy dissipation is responsible for the improved toughness at interfaces with DRXed grains.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.