Jiancong Liu, Zhiheng You, Ziwei Liang, Hongwei Du
{"title":"社交网络中用户驱动的竞争影响力最大化","authors":"Jiancong Liu, Zhiheng You, Ziwei Liang, Hongwei Du","doi":"10.1016/j.tcs.2024.114813","DOIUrl":null,"url":null,"abstract":"<div><p>Online social networks have emerged as pivotal platforms where users not only interact but also influence each other's decisions and preferences. As these networks grow in complexity, understanding and leveraging influence dynamics within networks have become essential, particularly for businesses and marketers. Competitive Influence Maximization (CIM) in online social networks has garnered significant interest, focusing on maximizing influence spread among multiple entities. However, recent research on CIM often overlooks the differences in user preferences, which realistically impact the propagation of competitive influence. To address this issue, we introduce the User-Driven Competitive Linear Threshold (UDCLT) model. This model takes into account user preference differences for two distinct brands within the identical product category, thereby formulating the User-Driven Competitive Influence Maximization (UDCIM) problem. Based on community structure, we introduce a novel measure, namely Topology Importance (TI), to assess a node's potential influence within a social network by considering its connections within and across communities. To resolve the UDCIM problem effectively, we develop a novel two-phase algorithm, the Community-based Dual Influence Assessment (CDIA) algorithm, which integrates Topology Importance and Dual Influence to identify seed nodes. Various experiments are conducted on four real-world datasets, illustrating the efficiency and effectiveness of the CDIA algorithm in addressing the UDCIM problem.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1018 ","pages":"Article 114813"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"User-driven competitive influence maximization in social networks\",\"authors\":\"Jiancong Liu, Zhiheng You, Ziwei Liang, Hongwei Du\",\"doi\":\"10.1016/j.tcs.2024.114813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Online social networks have emerged as pivotal platforms where users not only interact but also influence each other's decisions and preferences. As these networks grow in complexity, understanding and leveraging influence dynamics within networks have become essential, particularly for businesses and marketers. Competitive Influence Maximization (CIM) in online social networks has garnered significant interest, focusing on maximizing influence spread among multiple entities. However, recent research on CIM often overlooks the differences in user preferences, which realistically impact the propagation of competitive influence. To address this issue, we introduce the User-Driven Competitive Linear Threshold (UDCLT) model. This model takes into account user preference differences for two distinct brands within the identical product category, thereby formulating the User-Driven Competitive Influence Maximization (UDCIM) problem. Based on community structure, we introduce a novel measure, namely Topology Importance (TI), to assess a node's potential influence within a social network by considering its connections within and across communities. To resolve the UDCIM problem effectively, we develop a novel two-phase algorithm, the Community-based Dual Influence Assessment (CDIA) algorithm, which integrates Topology Importance and Dual Influence to identify seed nodes. Various experiments are conducted on four real-world datasets, illustrating the efficiency and effectiveness of the CDIA algorithm in addressing the UDCIM problem.</p></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1018 \",\"pages\":\"Article 114813\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004304\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004304","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
User-driven competitive influence maximization in social networks
Online social networks have emerged as pivotal platforms where users not only interact but also influence each other's decisions and preferences. As these networks grow in complexity, understanding and leveraging influence dynamics within networks have become essential, particularly for businesses and marketers. Competitive Influence Maximization (CIM) in online social networks has garnered significant interest, focusing on maximizing influence spread among multiple entities. However, recent research on CIM often overlooks the differences in user preferences, which realistically impact the propagation of competitive influence. To address this issue, we introduce the User-Driven Competitive Linear Threshold (UDCLT) model. This model takes into account user preference differences for two distinct brands within the identical product category, thereby formulating the User-Driven Competitive Influence Maximization (UDCIM) problem. Based on community structure, we introduce a novel measure, namely Topology Importance (TI), to assess a node's potential influence within a social network by considering its connections within and across communities. To resolve the UDCIM problem effectively, we develop a novel two-phase algorithm, the Community-based Dual Influence Assessment (CDIA) algorithm, which integrates Topology Importance and Dual Influence to identify seed nodes. Various experiments are conducted on four real-world datasets, illustrating the efficiency and effectiveness of the CDIA algorithm in addressing the UDCIM problem.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.