Petar Dimitrov , Eugenia Roumenina , Dessislava Ganeva , Alexander Gikov , Ilina Kamenova , Violeta Bozhanova
{"title":"利用多时信息和纹理信息增强基于 Pléiades 的作物绘图功能","authors":"Petar Dimitrov , Eugenia Roumenina , Dessislava Ganeva , Alexander Gikov , Ilina Kamenova , Violeta Bozhanova","doi":"10.1016/j.rsase.2024.101339","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate crop mapping using satellite imagery is crucial for improving the monitoring of agricultural landscapes. Very high resolution (VHR) satellite imagery offers unique capabilities in this respect, allowing for even small fields to be discerned and image texture analysis to be performed. Additionally, satellite imagery has greater efficiency than unmanned aerial vehicles due to its extensive coverage. Moreover, the operation flexibility of VHR satellites means that timely image acquisition is possible several times during the growing season. This study investigates the potential of VHR Pléiades images and the random forest classifier for accurate crop mapping. Four images acquired on April 9th, May 12th, May 31st, and June 20th were used to test 16 classification scenarios, including single-date and multi-temporal combinations of spectral bands, texture features, and vegetation Indices (VIs). The classification using the spectral bands from all four images achieved the highest overall accuracy, 93.9% and 96.3% at field and pixel levels, respectively. The bitemporal classifications had lower accuracy. Nevertheless, the combination of the May 12th and June 20th spectral bands had 90% accuracy, which indicated that two images may be sufficient for reliable mapping if the periods with phenological differences between crops are considered. Adding texture features to the spectral bands significantly enhanced the accuracy (up to 8%) of single-date classifications, making it highly recommended when only one image is available. However, the impact of texture was more pronounced on the later dates. It showed the most marked benefit for vineyards and alfalfa, with minimal or no improvement observed for other classes like winter barley. An additional increase in overall accuracy was achieved in three of the four dates by supplementing the spectral and texture bands with VIs. This study highlights the importance of considering image acquisition dates and crop types when designing satellite-based crop mapping strategies for optimal accuracy.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101339"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352938524002039/pdfft?md5=75f1c4ef516bf6f5f86d83733b0442b7&pid=1-s2.0-S2352938524002039-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing Pléiades-based crop mapping with multi-temporal and texture information\",\"authors\":\"Petar Dimitrov , Eugenia Roumenina , Dessislava Ganeva , Alexander Gikov , Ilina Kamenova , Violeta Bozhanova\",\"doi\":\"10.1016/j.rsase.2024.101339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate crop mapping using satellite imagery is crucial for improving the monitoring of agricultural landscapes. Very high resolution (VHR) satellite imagery offers unique capabilities in this respect, allowing for even small fields to be discerned and image texture analysis to be performed. Additionally, satellite imagery has greater efficiency than unmanned aerial vehicles due to its extensive coverage. Moreover, the operation flexibility of VHR satellites means that timely image acquisition is possible several times during the growing season. This study investigates the potential of VHR Pléiades images and the random forest classifier for accurate crop mapping. Four images acquired on April 9th, May 12th, May 31st, and June 20th were used to test 16 classification scenarios, including single-date and multi-temporal combinations of spectral bands, texture features, and vegetation Indices (VIs). The classification using the spectral bands from all four images achieved the highest overall accuracy, 93.9% and 96.3% at field and pixel levels, respectively. The bitemporal classifications had lower accuracy. Nevertheless, the combination of the May 12th and June 20th spectral bands had 90% accuracy, which indicated that two images may be sufficient for reliable mapping if the periods with phenological differences between crops are considered. Adding texture features to the spectral bands significantly enhanced the accuracy (up to 8%) of single-date classifications, making it highly recommended when only one image is available. However, the impact of texture was more pronounced on the later dates. It showed the most marked benefit for vineyards and alfalfa, with minimal or no improvement observed for other classes like winter barley. An additional increase in overall accuracy was achieved in three of the four dates by supplementing the spectral and texture bands with VIs. This study highlights the importance of considering image acquisition dates and crop types when designing satellite-based crop mapping strategies for optimal accuracy.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101339\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002039/pdfft?md5=75f1c4ef516bf6f5f86d83733b0442b7&pid=1-s2.0-S2352938524002039-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Enhancing Pléiades-based crop mapping with multi-temporal and texture information
Accurate crop mapping using satellite imagery is crucial for improving the monitoring of agricultural landscapes. Very high resolution (VHR) satellite imagery offers unique capabilities in this respect, allowing for even small fields to be discerned and image texture analysis to be performed. Additionally, satellite imagery has greater efficiency than unmanned aerial vehicles due to its extensive coverage. Moreover, the operation flexibility of VHR satellites means that timely image acquisition is possible several times during the growing season. This study investigates the potential of VHR Pléiades images and the random forest classifier for accurate crop mapping. Four images acquired on April 9th, May 12th, May 31st, and June 20th were used to test 16 classification scenarios, including single-date and multi-temporal combinations of spectral bands, texture features, and vegetation Indices (VIs). The classification using the spectral bands from all four images achieved the highest overall accuracy, 93.9% and 96.3% at field and pixel levels, respectively. The bitemporal classifications had lower accuracy. Nevertheless, the combination of the May 12th and June 20th spectral bands had 90% accuracy, which indicated that two images may be sufficient for reliable mapping if the periods with phenological differences between crops are considered. Adding texture features to the spectral bands significantly enhanced the accuracy (up to 8%) of single-date classifications, making it highly recommended when only one image is available. However, the impact of texture was more pronounced on the later dates. It showed the most marked benefit for vineyards and alfalfa, with minimal or no improvement observed for other classes like winter barley. An additional increase in overall accuracy was achieved in three of the four dates by supplementing the spectral and texture bands with VIs. This study highlights the importance of considering image acquisition dates and crop types when designing satellite-based crop mapping strategies for optimal accuracy.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems