采用深度学习的小波融合图像超分辨率模型,用于降维遥感多波段光谱反照率图像

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Sagthitharan Karalasingham , Ravinesh C. Deo , David Casillas-Pérez , Nawin Raj , Sancho Salcedo-Sanz
{"title":"采用深度学习的小波融合图像超分辨率模型,用于降维遥感多波段光谱反照率图像","authors":"Sagthitharan Karalasingham ,&nbsp;Ravinesh C. Deo ,&nbsp;David Casillas-Pérez ,&nbsp;Nawin Raj ,&nbsp;Sancho Salcedo-Sanz","doi":"10.1016/j.rsase.2024.101333","DOIUrl":null,"url":null,"abstract":"<div><p>Generating granular-scale surface albedo data is extremely important for solar photovoltaic site planning and to optimise renewable energy yield of bifacial panel installations. The albedo effect brings about a significant increase in power in bifacial photovoltaic systems, compared to their mono-facial counterparts, since the spectral response of bifacial solar panels correlates with the incident solar radiation wavelength on the back of the panel, to provide additional power generation capacity. Thus, harnessing the albedo data at relatively local scales is critical towards boosting solar power generation and providing greater power density in local electricity grids. This paper develops novel modelling approaches to produce high-resolution spectral albedo imagery across the Visible and Near Infrared (VNIR) bands, using the Wavelet-Fusion super-resolution model (i.e., Wavelet-FusionSR) trained with the Learned Gamma Correction approach by applying satellite image enhancement methodology. The proposed Wavelet-FusionSR model utilises the low-resolution moderate-resolution Imaging Spectroradiometer (MODIS) as well as high-resolution multi-spectral Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) satellite images, as critical inputs and ground-truth imagery, respectively, in order to perform sensor-to-sensor deep downscaling, without employing any synthetic or low-resolution satellite imagery data pairs. To augment the proposed deep learning algorithm across the decomposed sub-images of low-resolution inputs, we integrate local and global feature representation learning to train the proposed Wavelet-FusionSR model with Cauchy loss functions. In comparison with five competing benchmark models, the proposed Wavelet-FusionSR model demonstrates performance superiority using quantitative image downscaling metrics and visual assessments of the downscaled images for the visible band of solar radiation. The proposed Wavelet-FusionSR model yielded a Mean Square Error (MSE) of 0.00017, Signal-to-noise-ratio (PSNR) of 37.80, Structural Similarity Index (SSIM) of 0.999 and combined loss, MS-SSIMLoss, based on Multi Structural Similarity and Mean Absolute Error of 2.354 for the Visible Band images, and an MSE of 0.0014, PSNR of 28.43, SSIM of 0.999 and MS-SSIMLoss of 7.426 for the NIR spectral bands, demonstrating high efficacy of the proposed Wavelet-FusionSR method. The Wavelet-FusionSR method therefore attains high-resolution spectral albedo imagery outputs.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101333"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352938524001976/pdfft?md5=90b447006a776ecad587b02e0fa87bb1&pid=1-s2.0-S2352938524001976-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Wavelet-fusion image super-resolution model with deep learning for downscaling remotely-sensed, multi-band spectral albedo imagery\",\"authors\":\"Sagthitharan Karalasingham ,&nbsp;Ravinesh C. Deo ,&nbsp;David Casillas-Pérez ,&nbsp;Nawin Raj ,&nbsp;Sancho Salcedo-Sanz\",\"doi\":\"10.1016/j.rsase.2024.101333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generating granular-scale surface albedo data is extremely important for solar photovoltaic site planning and to optimise renewable energy yield of bifacial panel installations. The albedo effect brings about a significant increase in power in bifacial photovoltaic systems, compared to their mono-facial counterparts, since the spectral response of bifacial solar panels correlates with the incident solar radiation wavelength on the back of the panel, to provide additional power generation capacity. Thus, harnessing the albedo data at relatively local scales is critical towards boosting solar power generation and providing greater power density in local electricity grids. This paper develops novel modelling approaches to produce high-resolution spectral albedo imagery across the Visible and Near Infrared (VNIR) bands, using the Wavelet-Fusion super-resolution model (i.e., Wavelet-FusionSR) trained with the Learned Gamma Correction approach by applying satellite image enhancement methodology. The proposed Wavelet-FusionSR model utilises the low-resolution moderate-resolution Imaging Spectroradiometer (MODIS) as well as high-resolution multi-spectral Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) satellite images, as critical inputs and ground-truth imagery, respectively, in order to perform sensor-to-sensor deep downscaling, without employing any synthetic or low-resolution satellite imagery data pairs. To augment the proposed deep learning algorithm across the decomposed sub-images of low-resolution inputs, we integrate local and global feature representation learning to train the proposed Wavelet-FusionSR model with Cauchy loss functions. In comparison with five competing benchmark models, the proposed Wavelet-FusionSR model demonstrates performance superiority using quantitative image downscaling metrics and visual assessments of the downscaled images for the visible band of solar radiation. The proposed Wavelet-FusionSR model yielded a Mean Square Error (MSE) of 0.00017, Signal-to-noise-ratio (PSNR) of 37.80, Structural Similarity Index (SSIM) of 0.999 and combined loss, MS-SSIMLoss, based on Multi Structural Similarity and Mean Absolute Error of 2.354 for the Visible Band images, and an MSE of 0.0014, PSNR of 28.43, SSIM of 0.999 and MS-SSIMLoss of 7.426 for the NIR spectral bands, demonstrating high efficacy of the proposed Wavelet-FusionSR method. The Wavelet-FusionSR method therefore attains high-resolution spectral albedo imagery outputs.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101333\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352938524001976/pdfft?md5=90b447006a776ecad587b02e0fa87bb1&pid=1-s2.0-S2352938524001976-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524001976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524001976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生成粒度表面反照率数据对于太阳能光伏场地规划和优化双面太阳能电池板装置的可再生能源产量极为重要。由于双面太阳能电池板的光谱响应与电池板背面的入射太阳辐射波长相关,因此与单面太阳能电池板相比,反照率效应可显著提高双面光伏系统的发电量,从而提供额外的发电能力。因此,在相对局部的范围内利用反照率数据对于提高太阳能发电量和为当地电网提供更大的功率密度至关重要。本文开发了新颖的建模方法,通过应用卫星图像增强方法,使用经学习伽马校正方法训练的 Wavelet-Fusion 超分辨率模型(即 Wavelet-FusionSR),生成可见光和近红外(VNIR)波段的高分辨率光谱反照率图像。拟议的 Wavelet-FusionSR 模型利用低分辨率中分辨率成像分光仪(MODIS)和高分辨率多光谱先进星载热发射反射辐射计(ASTER)卫星图像,分别作为关键输入和地面实况图像,以执行传感器到传感器的深度降尺度,而无需使用任何合成或低分辨率卫星图像数据对。为了在低分辨率输入的分解子图像中增强所提出的深度学习算法,我们整合了局部和全局特征表示学习,利用考奇损失函数训练所提出的 Wavelet-FusionSR 模型。与五个同类基准模型相比,所提出的 Wavelet-FusionSR 模型在太阳辐射可见光波段的定量图像降尺度和降尺度图像的视觉评估方面表现出了卓越的性能。拟议的小波-融合 SR 模型的平均平方误差(MSE)为 0.00017,信噪比(PSNR)为 37.80,结构相似性指数(SSIM)为 0.999,基于多结构相似性和平均绝对误差的综合损失(MS-SSIMLoss)为 2。可见光波段图像的 MSE 为 0.354,近红外光谱波段图像的 MSE 为 0.0014,PSNR 为 28.43,SSIM 为 0.999,MS-SSIMLoss 为 7.426。因此,Wavelet-FusionSR 方法可实现高分辨率光谱反照率图像输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wavelet-fusion image super-resolution model with deep learning for downscaling remotely-sensed, multi-band spectral albedo imagery

Wavelet-fusion image super-resolution model with deep learning for downscaling remotely-sensed, multi-band spectral albedo imagery

Generating granular-scale surface albedo data is extremely important for solar photovoltaic site planning and to optimise renewable energy yield of bifacial panel installations. The albedo effect brings about a significant increase in power in bifacial photovoltaic systems, compared to their mono-facial counterparts, since the spectral response of bifacial solar panels correlates with the incident solar radiation wavelength on the back of the panel, to provide additional power generation capacity. Thus, harnessing the albedo data at relatively local scales is critical towards boosting solar power generation and providing greater power density in local electricity grids. This paper develops novel modelling approaches to produce high-resolution spectral albedo imagery across the Visible and Near Infrared (VNIR) bands, using the Wavelet-Fusion super-resolution model (i.e., Wavelet-FusionSR) trained with the Learned Gamma Correction approach by applying satellite image enhancement methodology. The proposed Wavelet-FusionSR model utilises the low-resolution moderate-resolution Imaging Spectroradiometer (MODIS) as well as high-resolution multi-spectral Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) satellite images, as critical inputs and ground-truth imagery, respectively, in order to perform sensor-to-sensor deep downscaling, without employing any synthetic or low-resolution satellite imagery data pairs. To augment the proposed deep learning algorithm across the decomposed sub-images of low-resolution inputs, we integrate local and global feature representation learning to train the proposed Wavelet-FusionSR model with Cauchy loss functions. In comparison with five competing benchmark models, the proposed Wavelet-FusionSR model demonstrates performance superiority using quantitative image downscaling metrics and visual assessments of the downscaled images for the visible band of solar radiation. The proposed Wavelet-FusionSR model yielded a Mean Square Error (MSE) of 0.00017, Signal-to-noise-ratio (PSNR) of 37.80, Structural Similarity Index (SSIM) of 0.999 and combined loss, MS-SSIMLoss, based on Multi Structural Similarity and Mean Absolute Error of 2.354 for the Visible Band images, and an MSE of 0.0014, PSNR of 28.43, SSIM of 0.999 and MS-SSIMLoss of 7.426 for the NIR spectral bands, demonstrating high efficacy of the proposed Wavelet-FusionSR method. The Wavelet-FusionSR method therefore attains high-resolution spectral albedo imagery outputs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信