{"title":"遗传密码及其 p-adic 超参数模型。","authors":"Branko Dragovich , Nataša Ž. Mišić","doi":"10.1016/j.biosystems.2024.105322","DOIUrl":null,"url":null,"abstract":"<div><p>The genetic code plays a central role in all living organisms and its modeling is important for describing and understanding involved the coding rules. There are many approaches to modeling various aspects of the genetic code. One of the simple and successful mathematical tools for modeling the similarity both between codons and between amino acids, is the ultrametrics and especially the <span><math><mi>p</mi></math></span>-adic distance. This article contains an overview of ultrametric (<span><math><mi>p</mi></math></span>-adic) modeling of genetic information, and its translation to proteins using the genetic code.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"246 ","pages":"Article 105322"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The genetic code and its p-adic ultrametric modeling\",\"authors\":\"Branko Dragovich , Nataša Ž. Mišić\",\"doi\":\"10.1016/j.biosystems.2024.105322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The genetic code plays a central role in all living organisms and its modeling is important for describing and understanding involved the coding rules. There are many approaches to modeling various aspects of the genetic code. One of the simple and successful mathematical tools for modeling the similarity both between codons and between amino acids, is the ultrametrics and especially the <span><math><mi>p</mi></math></span>-adic distance. This article contains an overview of ultrametric (<span><math><mi>p</mi></math></span>-adic) modeling of genetic information, and its translation to proteins using the genetic code.</p></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"246 \",\"pages\":\"Article 105322\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724002077\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724002077","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
The genetic code and its p-adic ultrametric modeling
The genetic code plays a central role in all living organisms and its modeling is important for describing and understanding involved the coding rules. There are many approaches to modeling various aspects of the genetic code. One of the simple and successful mathematical tools for modeling the similarity both between codons and between amino acids, is the ultrametrics and especially the -adic distance. This article contains an overview of ultrametric (-adic) modeling of genetic information, and its translation to proteins using the genetic code.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.