TR-107是酪酸肽酶蛋白水解亚基的一种激动剂,它能破坏线粒体代谢并抑制人类结直肠癌细胞的生长。

IF 5.3 2区 医学 Q1 ONCOLOGY
Michael Giarrizzo, Joseph F LaComb, Hetvi R Patel, Rohan G Reddy, John D Haley, Lee M Graves, Edwin J Iwanowicz, Agnieszka B Bialkowska
{"title":"TR-107是酪酸肽酶蛋白水解亚基的一种激动剂,它能破坏线粒体代谢并抑制人类结直肠癌细胞的生长。","authors":"Michael Giarrizzo, Joseph F LaComb, Hetvi R Patel, Rohan G Reddy, John D Haley, Lee M Graves, Edwin J Iwanowicz, Agnieszka B Bialkowska","doi":"10.1158/1535-7163.MCT-24-0170","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative phosphorylation (OXPHOS) is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates non-specific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound, TR-107, has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multi-targeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer (CRC) cells. TR-107 inhibited CRC cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response (UPRmt) and mtDNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of OXPHOS and a reduction in total cellular respiration. Multi-omics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by CRC cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TR-107, An Agonist of Caseinolytic Peptidase Proteolytic Subunit, Disrupts Mitochondrial Metabolism and Inhibits the Growth of Human Colorectal Cancer Cells.\",\"authors\":\"Michael Giarrizzo, Joseph F LaComb, Hetvi R Patel, Rohan G Reddy, John D Haley, Lee M Graves, Edwin J Iwanowicz, Agnieszka B Bialkowska\",\"doi\":\"10.1158/1535-7163.MCT-24-0170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative phosphorylation (OXPHOS) is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates non-specific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound, TR-107, has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multi-targeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer (CRC) cells. TR-107 inhibited CRC cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response (UPRmt) and mtDNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of OXPHOS and a reduction in total cellular respiration. Multi-omics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by CRC cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-24-0170\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0170","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氧化磷酸化(OXPHOS)是癌症增殖和抗药性的重要代谢过程。ClpXP 复合物通过降解折叠错误的蛋白质来维持线粒体蛋白稳态。Madera Therapeutics 公司已开发出一类 ClpXP 成分酪蛋白溶肽酶蛋白水解亚基(ClpP)的高效、选择性小分子激活剂(TR 化合物)。这种癌症治疗方法消除了底物识别,激活了线粒体内的非特异性蛋白酶功能,在多种恶性肿瘤中显示出令人鼓舞的临床前疗效。与多靶点临床药物ONC201相比,同类领先化合物TR-107在ClpP亲和力和激活方面的效力显著提高,药代动力学特性也有所增强。在本研究中,我们研究了 TR-107 对人类结直肠癌(CRC)细胞的体外疗效。在低纳摩尔浓度下,TR-107以剂量和时间依赖性方式抑制CRC细胞增殖,并诱导细胞周期停滞。从机理上讲,TR-107 下调了参与线粒体未折叠蛋白反应(UPRmt)以及 mtDNA 转录和翻译的蛋白质的表达。TR-107 降低了耗氧率和糖酵解补偿,证实了 OXPHOS 失活和细胞总呼吸量减少。对处理过的细胞进行的多组学分析表明,呼吸链复合物亚基下调,有丝分裂和铁凋亡途径上调。对铁变态反应的进一步评估显示,抗氧化和铁毒性防御功能耗竭,这可能会增强对联合化疗药物的敏感性。总之,这项研究为 CRC 细胞应对强效 ClpP 激动所采用的亚细胞机制提供了证据和见解。我们的研究结果表明了破坏线粒体代谢的有效方法,支持 TR-107 的转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TR-107, An Agonist of Caseinolytic Peptidase Proteolytic Subunit, Disrupts Mitochondrial Metabolism and Inhibits the Growth of Human Colorectal Cancer Cells.

Oxidative phosphorylation (OXPHOS) is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates non-specific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound, TR-107, has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multi-targeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer (CRC) cells. TR-107 inhibited CRC cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response (UPRmt) and mtDNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of OXPHOS and a reduction in total cellular respiration. Multi-omics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by CRC cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信