KLHL20 及其在细胞稳态中的作用:新视角和治疗潜力。

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
{"title":"KLHL20 及其在细胞稳态中的作用:新视角和治疗潜力。","authors":"","doi":"10.1016/j.lfs.2024.123041","DOIUrl":null,"url":null,"abstract":"<div><p>Ubiquitin ligases are proteins with the ability to trigger non-degradative signaling or proteasomal destruction by attracting substrates and facilitating ubiquitin transfer onto target proteins. Over the years, there has been a continuous discovery of new ubiquitin ligases, and Kelch-like protein 20 (KLHL20) is one of the most recent discoveries that have several biological roles which include its role in ubiquitin ligase activities. KLHL20 binds as a substrate component of ubiquitin ligase Cullin3 (Cul3). Several substrates for ubiquitin ligases (KLHL20 based) have been reported, these include Unc-51 Like Autophagy Activating Kinase 1 (ULK1), promyelocytic leukemia (PML), and Death Associated Protein Kinase 1 (DAPK1). KLHL20 shows multiple cell functions linked to several human diseases through ubiquitination of these substrates. Current literature shows that KLHL20 ubiquitin ligase regulates malignancies in humans and also suggests how important it is to develop regulating agents for tumour-suppressive KLHL20 to prevent tumourigenesis, Recent research has highlighted its potential therapeutic implications in several areas. In oncology, KLHL20's regulatory role in protein degradation pathways suggests that its targeting could offer novel strategies for cancer treatment by modulating the stability of proteins involved in tumour growth and survival. In neurodegenerative diseases, KLHL20's function in maintaining protein homeostasis positions it as a potential target for therapies aimed at managing protein aggregation and cellular stress. Here, we review the functions of KLHL20 during the carcinogenesis process, looking at its role in cancer progression, and regulation of ubiquitination events mediated by KLHL20 in human cancers, as well as its potential therapeutic interventions.</p></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KLHL20 and its role in cell homeostasis: A new perspective and therapeutic potential\",\"authors\":\"\",\"doi\":\"10.1016/j.lfs.2024.123041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ubiquitin ligases are proteins with the ability to trigger non-degradative signaling or proteasomal destruction by attracting substrates and facilitating ubiquitin transfer onto target proteins. Over the years, there has been a continuous discovery of new ubiquitin ligases, and Kelch-like protein 20 (KLHL20) is one of the most recent discoveries that have several biological roles which include its role in ubiquitin ligase activities. KLHL20 binds as a substrate component of ubiquitin ligase Cullin3 (Cul3). Several substrates for ubiquitin ligases (KLHL20 based) have been reported, these include Unc-51 Like Autophagy Activating Kinase 1 (ULK1), promyelocytic leukemia (PML), and Death Associated Protein Kinase 1 (DAPK1). KLHL20 shows multiple cell functions linked to several human diseases through ubiquitination of these substrates. Current literature shows that KLHL20 ubiquitin ligase regulates malignancies in humans and also suggests how important it is to develop regulating agents for tumour-suppressive KLHL20 to prevent tumourigenesis, Recent research has highlighted its potential therapeutic implications in several areas. In oncology, KLHL20's regulatory role in protein degradation pathways suggests that its targeting could offer novel strategies for cancer treatment by modulating the stability of proteins involved in tumour growth and survival. In neurodegenerative diseases, KLHL20's function in maintaining protein homeostasis positions it as a potential target for therapies aimed at managing protein aggregation and cellular stress. Here, we review the functions of KLHL20 during the carcinogenesis process, looking at its role in cancer progression, and regulation of ubiquitination events mediated by KLHL20 in human cancers, as well as its potential therapeutic interventions.</p></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320524006313\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524006313","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

泛素连接酶是一种蛋白质,它能够通过吸引底物并促进泛素转移到目标蛋白质上,从而触发非降解信号转导或蛋白酶体破坏。多年来,不断有新的泛素连接酶被发现,而 Kelch 样蛋白 20(KLHL20)是最新发现的泛素连接酶之一,它具有多种生物学作用,其中包括在泛素连接酶活动中的作用。KLHL20 作为泛素连接酶 Cullin3(Cul3)的底物成分与之结合。据报道,泛素连接酶(基于 KLHL20)有多种底物,包括 Unc-51 Like 自噬激活激酶 1(ULK1)、早幼粒细胞白血病(PML)和死亡相关蛋白激酶 1(DAPK1)。KLHL20 通过泛素化这些底物,显示出与多种人类疾病相关的多种细胞功能。目前的文献显示,KLHL20 泛素连接酶调节人类恶性肿瘤,这也表明开发抑制肿瘤的 KLHL20 的调节剂以防止肿瘤发生是多么重要。在肿瘤学方面,KLHL20在蛋白质降解途径中的调控作用表明,通过调节参与肿瘤生长和存活的蛋白质的稳定性,以其为靶点可以为癌症治疗提供新的策略。在神经退行性疾病中,KLHL20在维持蛋白质平衡方面的功能使其成为旨在控制蛋白质聚集和细胞应激的疗法的潜在靶点。在此,我们回顾了 KLHL20 在致癌过程中的功能,研究了它在癌症进展中的作用、KLHL20 在人类癌症中介导的泛素化事件的调控及其潜在的治疗干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

KLHL20 and its role in cell homeostasis: A new perspective and therapeutic potential

KLHL20 and its role in cell homeostasis: A new perspective and therapeutic potential

Ubiquitin ligases are proteins with the ability to trigger non-degradative signaling or proteasomal destruction by attracting substrates and facilitating ubiquitin transfer onto target proteins. Over the years, there has been a continuous discovery of new ubiquitin ligases, and Kelch-like protein 20 (KLHL20) is one of the most recent discoveries that have several biological roles which include its role in ubiquitin ligase activities. KLHL20 binds as a substrate component of ubiquitin ligase Cullin3 (Cul3). Several substrates for ubiquitin ligases (KLHL20 based) have been reported, these include Unc-51 Like Autophagy Activating Kinase 1 (ULK1), promyelocytic leukemia (PML), and Death Associated Protein Kinase 1 (DAPK1). KLHL20 shows multiple cell functions linked to several human diseases through ubiquitination of these substrates. Current literature shows that KLHL20 ubiquitin ligase regulates malignancies in humans and also suggests how important it is to develop regulating agents for tumour-suppressive KLHL20 to prevent tumourigenesis, Recent research has highlighted its potential therapeutic implications in several areas. In oncology, KLHL20's regulatory role in protein degradation pathways suggests that its targeting could offer novel strategies for cancer treatment by modulating the stability of proteins involved in tumour growth and survival. In neurodegenerative diseases, KLHL20's function in maintaining protein homeostasis positions it as a potential target for therapies aimed at managing protein aggregation and cellular stress. Here, we review the functions of KLHL20 during the carcinogenesis process, looking at its role in cancer progression, and regulation of ubiquitination events mediated by KLHL20 in human cancers, as well as its potential therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信