用智能光学技术看到看不见的物体

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy
Isaac Nape, Andrew Forbes
{"title":"用智能光学技术看到看不见的物体","authors":"Isaac Nape, Andrew Forbes","doi":"10.1038/s41377-024-01575-2","DOIUrl":null,"url":null,"abstract":"<p><p>Transparent objects are invisible to traditional cameras because they can only detect intensity fluctuations, necessitating the need for interferometry followed by computationally intensive digital image processing. Now it is shown that the necessary transformations can be performed optically by combining machine learning and diffractive optics, for a direct in-situ measurement of transparent objects with conventional cameras.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"232"},"PeriodicalIF":19.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374888/pdf/","citationCount":"0","resultStr":"{\"title\":\"Seeing invisible objects with intelligent optics.\",\"authors\":\"Isaac Nape, Andrew Forbes\",\"doi\":\"10.1038/s41377-024-01575-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transparent objects are invisible to traditional cameras because they can only detect intensity fluctuations, necessitating the need for interferometry followed by computationally intensive digital image processing. Now it is shown that the necessary transformations can be performed optically by combining machine learning and diffractive optics, for a direct in-situ measurement of transparent objects with conventional cameras.</p>\",\"PeriodicalId\":18093,\"journal\":{\"name\":\"Light, science & applications\",\"volume\":\"13 1\",\"pages\":\"232\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light, science & applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01575-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01575-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

透明物体是传统相机所无法看到的,因为它们只能检测到强度波动,因此需要先进行干涉测量,然后再进行计算密集型数字图像处理。现在的研究表明,通过将机器学习和衍射光学相结合,可以在光学上进行必要的转换,从而用传统相机直接对透明物体进行现场测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Seeing invisible objects with intelligent optics.

Seeing invisible objects with intelligent optics.

Transparent objects are invisible to traditional cameras because they can only detect intensity fluctuations, necessitating the need for interferometry followed by computationally intensive digital image processing. Now it is shown that the necessary transformations can be performed optically by combining machine learning and diffractive optics, for a direct in-situ measurement of transparent objects with conventional cameras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信