{"title":"利用深度学习进行脑肿瘤检测和分割。","authors":"Rafia Ahsan, Iram Shahzadi, Faisal Najeeb, Hammad Omer","doi":"10.1007/s10334-024-01203-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Brain tumor detection, classification and segmentation are challenging due to the heterogeneous nature of brain tumors. Different deep learning-based algorithms are available for object detection; however, the performance of detection algorithms on brain tumor data has not been widely explored. Therefore, we aim to compare different object detection algorithms (Faster R-CNN, YOLO & SSD) for brain tumor detection on MRI data. Furthermore, the best-performing detection network is paired with a 2D U-Net for pixel-wise segmentation of abnormal tumor cells.</p><p><strong>Materials and methods: </strong>The proposed model was evaluated on the Brain Tumor Figshare (BTF) dataset, and the best-performing detection network cascaded with 2D U-Net for pixel-wise segmentation of tumors. The best-performing detection network was also fine-tuned on BRATS 2018 data to detect and classify the glioma tumor.</p><p><strong>Results: </strong>For the detection of three tumor types, YOLOv5 achieved the highest mAP of 89.5% on test data compared to other networks. For segmentation, YOLOv5 combined with 2D U-Net achieved a higher DSC compared to the 2D U-Net alone (DSC: YOLOv5 + 2D U-Net = 88.1%; 2D U-Net = 80.5%). The proposed method was compared with the existing detection and segmentation network i.e. Mask R-CNN and achieved a higher mAP (YOLOv5 + 2D U-Net = 89.5%; Mask R-CNN = 67%) and DSC (YOLOv5 + 2D U-Net = 88.1%; Mask R-CNN = 44.2%).</p><p><strong>Conclusion: </strong>In this work, we propose a deep-learning-based method for multi-class tumor detection, classification and segmentation that combines YOLOv5 with 2D U-Net. The results show that the proposed method not only detects different types of brain tumors accurately but also delineates the tumor region precisely within the detected bounding box.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain tumor detection and segmentation using deep learning.\",\"authors\":\"Rafia Ahsan, Iram Shahzadi, Faisal Najeeb, Hammad Omer\",\"doi\":\"10.1007/s10334-024-01203-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Brain tumor detection, classification and segmentation are challenging due to the heterogeneous nature of brain tumors. Different deep learning-based algorithms are available for object detection; however, the performance of detection algorithms on brain tumor data has not been widely explored. Therefore, we aim to compare different object detection algorithms (Faster R-CNN, YOLO & SSD) for brain tumor detection on MRI data. Furthermore, the best-performing detection network is paired with a 2D U-Net for pixel-wise segmentation of abnormal tumor cells.</p><p><strong>Materials and methods: </strong>The proposed model was evaluated on the Brain Tumor Figshare (BTF) dataset, and the best-performing detection network cascaded with 2D U-Net for pixel-wise segmentation of tumors. The best-performing detection network was also fine-tuned on BRATS 2018 data to detect and classify the glioma tumor.</p><p><strong>Results: </strong>For the detection of three tumor types, YOLOv5 achieved the highest mAP of 89.5% on test data compared to other networks. For segmentation, YOLOv5 combined with 2D U-Net achieved a higher DSC compared to the 2D U-Net alone (DSC: YOLOv5 + 2D U-Net = 88.1%; 2D U-Net = 80.5%). The proposed method was compared with the existing detection and segmentation network i.e. Mask R-CNN and achieved a higher mAP (YOLOv5 + 2D U-Net = 89.5%; Mask R-CNN = 67%) and DSC (YOLOv5 + 2D U-Net = 88.1%; Mask R-CNN = 44.2%).</p><p><strong>Conclusion: </strong>In this work, we propose a deep-learning-based method for multi-class tumor detection, classification and segmentation that combines YOLOv5 with 2D U-Net. The results show that the proposed method not only detects different types of brain tumors accurately but also delineates the tumor region precisely within the detected bounding box.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01203-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01203-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Brain tumor detection and segmentation using deep learning.
Objectives: Brain tumor detection, classification and segmentation are challenging due to the heterogeneous nature of brain tumors. Different deep learning-based algorithms are available for object detection; however, the performance of detection algorithms on brain tumor data has not been widely explored. Therefore, we aim to compare different object detection algorithms (Faster R-CNN, YOLO & SSD) for brain tumor detection on MRI data. Furthermore, the best-performing detection network is paired with a 2D U-Net for pixel-wise segmentation of abnormal tumor cells.
Materials and methods: The proposed model was evaluated on the Brain Tumor Figshare (BTF) dataset, and the best-performing detection network cascaded with 2D U-Net for pixel-wise segmentation of tumors. The best-performing detection network was also fine-tuned on BRATS 2018 data to detect and classify the glioma tumor.
Results: For the detection of three tumor types, YOLOv5 achieved the highest mAP of 89.5% on test data compared to other networks. For segmentation, YOLOv5 combined with 2D U-Net achieved a higher DSC compared to the 2D U-Net alone (DSC: YOLOv5 + 2D U-Net = 88.1%; 2D U-Net = 80.5%). The proposed method was compared with the existing detection and segmentation network i.e. Mask R-CNN and achieved a higher mAP (YOLOv5 + 2D U-Net = 89.5%; Mask R-CNN = 67%) and DSC (YOLOv5 + 2D U-Net = 88.1%; Mask R-CNN = 44.2%).
Conclusion: In this work, we propose a deep-learning-based method for multi-class tumor detection, classification and segmentation that combines YOLOv5 with 2D U-Net. The results show that the proposed method not only detects different types of brain tumors accurately but also delineates the tumor region precisely within the detected bounding box.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.