Lei Ma, Yukun Yan, Shaoxing Dai, Dangguo Shao, Sanli Yi, Jiawei Wang, Jingtao Li, Jiangkai Yan
{"title":"基于改良深林的人体口服药物生物利用度预测研究。","authors":"Lei Ma, Yukun Yan, Shaoxing Dai, Dangguo Shao, Sanli Yi, Jiawei Wang, Jingtao Li, Jiangkai Yan","doi":"10.1016/j.jmgm.2024.108851","DOIUrl":null,"url":null,"abstract":"<div><p>Human oral bioavailability is a crucial factor in drug discovery. In recent years, researchers have constructed a variety of different prediction models. However, given the limited size of human oral bioavailability data sets, the challenge of making accurate predictions with small sample sizes has become a critical issue in the field. The deep forest model, with its adaptively determinable number of cascade levels, can perform exceptionally well even on small-scale data. However, the original deep forest suffers unbalanced multi-grained scanning process and premature stopping of cascade forest training. In this paper, we propose a human oral bioavailability predict method based on an improved deep forest, called balanced multi-grained scanning mapping cascade forest (bgmc-forest). Firstly, the mordred descriptor method is selected to feature extraction, then enhanced features are obtained by the improved balanced multi-grained scanning, which solves the problem of missing features at both ends. And finally, the prediction results are obtained by feature mapping cascaded forests, which is based on principal component analysis and cascade forests, ensures the effectiveness of the cascade forest. The superiority of the model constructed in this paper is demonstrated through comparative experiments, while the effectiveness of the improved module is verified through ablation experiments. Finally the decision-making process of the model is explained by the shapley additive explanations interpretation algorithm.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"133 ","pages":"Article 108851"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on prediction of human oral bioavailability of drugs based on improved deep forest\",\"authors\":\"Lei Ma, Yukun Yan, Shaoxing Dai, Dangguo Shao, Sanli Yi, Jiawei Wang, Jingtao Li, Jiangkai Yan\",\"doi\":\"10.1016/j.jmgm.2024.108851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human oral bioavailability is a crucial factor in drug discovery. In recent years, researchers have constructed a variety of different prediction models. However, given the limited size of human oral bioavailability data sets, the challenge of making accurate predictions with small sample sizes has become a critical issue in the field. The deep forest model, with its adaptively determinable number of cascade levels, can perform exceptionally well even on small-scale data. However, the original deep forest suffers unbalanced multi-grained scanning process and premature stopping of cascade forest training. In this paper, we propose a human oral bioavailability predict method based on an improved deep forest, called balanced multi-grained scanning mapping cascade forest (bgmc-forest). Firstly, the mordred descriptor method is selected to feature extraction, then enhanced features are obtained by the improved balanced multi-grained scanning, which solves the problem of missing features at both ends. And finally, the prediction results are obtained by feature mapping cascaded forests, which is based on principal component analysis and cascade forests, ensures the effectiveness of the cascade forest. The superiority of the model constructed in this paper is demonstrated through comparative experiments, while the effectiveness of the improved module is verified through ablation experiments. Finally the decision-making process of the model is explained by the shapley additive explanations interpretation algorithm.</p></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"133 \",\"pages\":\"Article 108851\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324001517\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001517","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Research on prediction of human oral bioavailability of drugs based on improved deep forest
Human oral bioavailability is a crucial factor in drug discovery. In recent years, researchers have constructed a variety of different prediction models. However, given the limited size of human oral bioavailability data sets, the challenge of making accurate predictions with small sample sizes has become a critical issue in the field. The deep forest model, with its adaptively determinable number of cascade levels, can perform exceptionally well even on small-scale data. However, the original deep forest suffers unbalanced multi-grained scanning process and premature stopping of cascade forest training. In this paper, we propose a human oral bioavailability predict method based on an improved deep forest, called balanced multi-grained scanning mapping cascade forest (bgmc-forest). Firstly, the mordred descriptor method is selected to feature extraction, then enhanced features are obtained by the improved balanced multi-grained scanning, which solves the problem of missing features at both ends. And finally, the prediction results are obtained by feature mapping cascaded forests, which is based on principal component analysis and cascade forests, ensures the effectiveness of the cascade forest. The superiority of the model constructed in this paper is demonstrated through comparative experiments, while the effectiveness of the improved module is verified through ablation experiments. Finally the decision-making process of the model is explained by the shapley additive explanations interpretation algorithm.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.