Ruoqing Xu, En Yang, Hsin Liang, Shenying Luo, Yunhan Liu, Yimin Khoong, Haizhou Li, Xin Huang, Yixuan Zhao, Tao Zan
{"title":"ALKBH5 介导的 m6A 去甲基化可改善皮肤病理性纤维化中细胞外基质的沉积。","authors":"Ruoqing Xu, En Yang, Hsin Liang, Shenying Luo, Yunhan Liu, Yimin Khoong, Haizhou Li, Xin Huang, Yixuan Zhao, Tao Zan","doi":"10.1002/ctm2.70016","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Elevated extracellular matrix (ECM) accumulation is a major contributing factor to the pathogenesis of fibrotic diseases. Recent studies have indicated that N6-methyladenosine (m<sup>6</sup>A) RNA modification plays a pivotal role in modulating RNA stability and contribute to the initiation of various pathological conditions. Howbeit, the precise mechanism by which m<sup>6</sup>A influences ECM deposition remains unclear.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this study, we used hypertrophic scars (HTSs) as a paradigm to investigate ECM-related diseases. We focused on the role of ALKBH5-mediated m<sup>6</sup>A demethylation within the pathological progression of HTSs and examined its correlation with clinical stages. The effects of ALKBH5 ablation on ECM components were studied both in vivo and in vitro. Downstream targets of ALKBH5, along with their underlying mechanisms, were identified using integrated high-throughput analysis, RNA-binding protein immunoprecipitation and RNA pull-down assays. Furthermore, the therapeutic potential of exogenous ALKBH5 overexpression was evaluated in fibrotic scar models.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>ALKBH5 was decreased in fibroblasts derived from HTS lesions and was negatively correlated with their clinical stages. Importantly, ablation of ALKBH5 promoted the expression of COL3A1, COL1A1, and ELN, leading to pathological deposition and reconstruction of the ECM both in vivo and in vitro. From a therapeutic perspective, the exogenous overexpression of ALKBH5 significantly inhibited abnormal collagen deposition in fibrotic scar models. As determined by integrated high-throughput analysis, key ECM components including COL3A1, COL1A1, and ELN are direct downstream targets of ALKBH5. By means of its mechanism, ALKBH5 inhibits the expression of COL3A1, COL1A1, and ELN by removing m<sup>6</sup>A from mRNAs, thereby decreasing their stability in a YTHDF1-dependent manner.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our study identified ALKBH5 as an endogenous suppressor of pathological ECM deposition, contributing to the development of a reprogrammed m6A-targeted therapy for HTSs.</p>\n </section>\n </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 9","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374695/pdf/","citationCount":"0","resultStr":"{\"title\":\"ALKBH5-mediated m6A demethylation ameliorates extracellular matrix deposition in cutaneous pathological fibrosis\",\"authors\":\"Ruoqing Xu, En Yang, Hsin Liang, Shenying Luo, Yunhan Liu, Yimin Khoong, Haizhou Li, Xin Huang, Yixuan Zhao, Tao Zan\",\"doi\":\"10.1002/ctm2.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Elevated extracellular matrix (ECM) accumulation is a major contributing factor to the pathogenesis of fibrotic diseases. Recent studies have indicated that N6-methyladenosine (m<sup>6</sup>A) RNA modification plays a pivotal role in modulating RNA stability and contribute to the initiation of various pathological conditions. Howbeit, the precise mechanism by which m<sup>6</sup>A influences ECM deposition remains unclear.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In this study, we used hypertrophic scars (HTSs) as a paradigm to investigate ECM-related diseases. We focused on the role of ALKBH5-mediated m<sup>6</sup>A demethylation within the pathological progression of HTSs and examined its correlation with clinical stages. The effects of ALKBH5 ablation on ECM components were studied both in vivo and in vitro. Downstream targets of ALKBH5, along with their underlying mechanisms, were identified using integrated high-throughput analysis, RNA-binding protein immunoprecipitation and RNA pull-down assays. Furthermore, the therapeutic potential of exogenous ALKBH5 overexpression was evaluated in fibrotic scar models.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>ALKBH5 was decreased in fibroblasts derived from HTS lesions and was negatively correlated with their clinical stages. Importantly, ablation of ALKBH5 promoted the expression of COL3A1, COL1A1, and ELN, leading to pathological deposition and reconstruction of the ECM both in vivo and in vitro. From a therapeutic perspective, the exogenous overexpression of ALKBH5 significantly inhibited abnormal collagen deposition in fibrotic scar models. As determined by integrated high-throughput analysis, key ECM components including COL3A1, COL1A1, and ELN are direct downstream targets of ALKBH5. By means of its mechanism, ALKBH5 inhibits the expression of COL3A1, COL1A1, and ELN by removing m<sup>6</sup>A from mRNAs, thereby decreasing their stability in a YTHDF1-dependent manner.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Our study identified ALKBH5 as an endogenous suppressor of pathological ECM deposition, contributing to the development of a reprogrammed m6A-targeted therapy for HTSs.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10189,\"journal\":{\"name\":\"Clinical and Translational Medicine\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70016\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Elevated extracellular matrix (ECM) accumulation is a major contributing factor to the pathogenesis of fibrotic diseases. Recent studies have indicated that N6-methyladenosine (m6A) RNA modification plays a pivotal role in modulating RNA stability and contribute to the initiation of various pathological conditions. Howbeit, the precise mechanism by which m6A influences ECM deposition remains unclear.
Methods
In this study, we used hypertrophic scars (HTSs) as a paradigm to investigate ECM-related diseases. We focused on the role of ALKBH5-mediated m6A demethylation within the pathological progression of HTSs and examined its correlation with clinical stages. The effects of ALKBH5 ablation on ECM components were studied both in vivo and in vitro. Downstream targets of ALKBH5, along with their underlying mechanisms, were identified using integrated high-throughput analysis, RNA-binding protein immunoprecipitation and RNA pull-down assays. Furthermore, the therapeutic potential of exogenous ALKBH5 overexpression was evaluated in fibrotic scar models.
Results
ALKBH5 was decreased in fibroblasts derived from HTS lesions and was negatively correlated with their clinical stages. Importantly, ablation of ALKBH5 promoted the expression of COL3A1, COL1A1, and ELN, leading to pathological deposition and reconstruction of the ECM both in vivo and in vitro. From a therapeutic perspective, the exogenous overexpression of ALKBH5 significantly inhibited abnormal collagen deposition in fibrotic scar models. As determined by integrated high-throughput analysis, key ECM components including COL3A1, COL1A1, and ELN are direct downstream targets of ALKBH5. By means of its mechanism, ALKBH5 inhibits the expression of COL3A1, COL1A1, and ELN by removing m6A from mRNAs, thereby decreasing their stability in a YTHDF1-dependent manner.
Conclusions
Our study identified ALKBH5 as an endogenous suppressor of pathological ECM deposition, contributing to the development of a reprogrammed m6A-targeted therapy for HTSs.
期刊介绍:
Clinical and Translational Medicine (CTM) is an international, peer-reviewed, open-access journal dedicated to accelerating the translation of preclinical research into clinical applications and fostering communication between basic and clinical scientists. It highlights the clinical potential and application of various fields including biotechnologies, biomaterials, bioengineering, biomarkers, molecular medicine, omics science, bioinformatics, immunology, molecular imaging, drug discovery, regulation, and health policy. With a focus on the bench-to-bedside approach, CTM prioritizes studies and clinical observations that generate hypotheses relevant to patients and diseases, guiding investigations in cellular and molecular medicine. The journal encourages submissions from clinicians, researchers, policymakers, and industry professionals.