{"title":"开发循环加载下桩群行为分析的改进型有限元公式","authors":"Jian-Hong Wan, Shui-Hua Jiang, Xue-You Li, Zhilu Chang","doi":"10.1002/nag.3828","DOIUrl":null,"url":null,"abstract":"<p>The effect of cyclic loading is an essential factor leading to progressive soil strength degradation. Therefore, a comprehensive analysis of the pile-soil system behavior under cyclic loading is required to ensure the stability of pile group. There is room for improvement in the inherent constraint of the conventional numerical model in terms of approximating the soil resistance distribution along the pile by point loads at element nodes, necessitating a specific element that integrates considerations of pile group effect and cyclic loading within a unified framework. This study aims to develop a newly specific type of element for efficiently predicting nonlinear behavior within the pile-soil system, addressing simulations involving nonlinear pile-soil interaction, pile group effect, and cyclic loading. Modified element formulations based on soil stiffness matrices and soil resistance vectors specifically address pile group effect and consider parameters that influence pile behavior under cyclic lateral loading. The numerical solution procedure with Newton-Raphson iteration allows the calculation of pile responses in geometric and material nonlinear analyses. The validation of the proposed method includes several examples, comparing it with existing numerical solutions and experimental tests of single piles and pile groups under cyclic loading. These comparisons further support the consistency of the proposed method with measured data and validate its accuracy in considering group effect and cyclic loading. The parametric study illustrates the ability of the proposed method to capture cyclic loading parameters while considering the influence of the number and magnitude of load cycles, the cyclic load direction, and the installation methods.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 17","pages":"4089-4109"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of improved finite element formulations for pile group behavior analysis under cyclic loading\",\"authors\":\"Jian-Hong Wan, Shui-Hua Jiang, Xue-You Li, Zhilu Chang\",\"doi\":\"10.1002/nag.3828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of cyclic loading is an essential factor leading to progressive soil strength degradation. Therefore, a comprehensive analysis of the pile-soil system behavior under cyclic loading is required to ensure the stability of pile group. There is room for improvement in the inherent constraint of the conventional numerical model in terms of approximating the soil resistance distribution along the pile by point loads at element nodes, necessitating a specific element that integrates considerations of pile group effect and cyclic loading within a unified framework. This study aims to develop a newly specific type of element for efficiently predicting nonlinear behavior within the pile-soil system, addressing simulations involving nonlinear pile-soil interaction, pile group effect, and cyclic loading. Modified element formulations based on soil stiffness matrices and soil resistance vectors specifically address pile group effect and consider parameters that influence pile behavior under cyclic lateral loading. The numerical solution procedure with Newton-Raphson iteration allows the calculation of pile responses in geometric and material nonlinear analyses. The validation of the proposed method includes several examples, comparing it with existing numerical solutions and experimental tests of single piles and pile groups under cyclic loading. These comparisons further support the consistency of the proposed method with measured data and validate its accuracy in considering group effect and cyclic loading. The parametric study illustrates the ability of the proposed method to capture cyclic loading parameters while considering the influence of the number and magnitude of load cycles, the cyclic load direction, and the installation methods.</p>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"48 17\",\"pages\":\"4089-4109\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3828\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3828","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Development of improved finite element formulations for pile group behavior analysis under cyclic loading
The effect of cyclic loading is an essential factor leading to progressive soil strength degradation. Therefore, a comprehensive analysis of the pile-soil system behavior under cyclic loading is required to ensure the stability of pile group. There is room for improvement in the inherent constraint of the conventional numerical model in terms of approximating the soil resistance distribution along the pile by point loads at element nodes, necessitating a specific element that integrates considerations of pile group effect and cyclic loading within a unified framework. This study aims to develop a newly specific type of element for efficiently predicting nonlinear behavior within the pile-soil system, addressing simulations involving nonlinear pile-soil interaction, pile group effect, and cyclic loading. Modified element formulations based on soil stiffness matrices and soil resistance vectors specifically address pile group effect and consider parameters that influence pile behavior under cyclic lateral loading. The numerical solution procedure with Newton-Raphson iteration allows the calculation of pile responses in geometric and material nonlinear analyses. The validation of the proposed method includes several examples, comparing it with existing numerical solutions and experimental tests of single piles and pile groups under cyclic loading. These comparisons further support the consistency of the proposed method with measured data and validate its accuracy in considering group effect and cyclic loading. The parametric study illustrates the ability of the proposed method to capture cyclic loading parameters while considering the influence of the number and magnitude of load cycles, the cyclic load direction, and the installation methods.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.