自适应有限元方法

IF 16.3 1区 数学 Q1 MATHEMATICS
Andrea Bonito, Claudio Canuto, Ricardo H. Nochetto, Andreas Veeser
{"title":"自适应有限元方法","authors":"Andrea Bonito, Claudio Canuto, Ricardo H. Nochetto, Andreas Veeser","doi":"10.1017/s0962492924000011","DOIUrl":null,"url":null,"abstract":"<p>This is a survey of the theory of adaptive finite element methods (AFEMs), which are fundamental to modern computational science and engineering but whose mathematical assessment is a formidable challenge. We present a self-contained and up-to-date discussion of AFEMs for linear second-order elliptic PDEs and dimension <span>d &gt; 1</span>, with emphasis on foundational issues. After a brief review of functional analysis and basic finite element theory, including piecewise polynomial approximation in graded meshes, we present the core material for coercive problems. We start with a novel <span>a posteriori</span> error analysis applicable to rough data, which delivers estimators fully equivalent to the solution error. They are used in the design and study of three AFEMs depending on the structure of data. We prove linear convergence of these algorithms and rate-optimality provided the solution and data belong to suitable approximation classes. We also address the relation between approximation and regularity classes. We finally extend this theory to discontinuous Galerkin methods as prototypes of non-conforming AFEMs, and beyond coercive problems to inf-sup stable AFEMs.</p>","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"59 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive finite element methods\",\"authors\":\"Andrea Bonito, Claudio Canuto, Ricardo H. Nochetto, Andreas Veeser\",\"doi\":\"10.1017/s0962492924000011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is a survey of the theory of adaptive finite element methods (AFEMs), which are fundamental to modern computational science and engineering but whose mathematical assessment is a formidable challenge. We present a self-contained and up-to-date discussion of AFEMs for linear second-order elliptic PDEs and dimension <span>d &gt; 1</span>, with emphasis on foundational issues. After a brief review of functional analysis and basic finite element theory, including piecewise polynomial approximation in graded meshes, we present the core material for coercive problems. We start with a novel <span>a posteriori</span> error analysis applicable to rough data, which delivers estimators fully equivalent to the solution error. They are used in the design and study of three AFEMs depending on the structure of data. We prove linear convergence of these algorithms and rate-optimality provided the solution and data belong to suitable approximation classes. We also address the relation between approximation and regularity classes. We finally extend this theory to discontinuous Galerkin methods as prototypes of non-conforming AFEMs, and beyond coercive problems to inf-sup stable AFEMs.</p>\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0962492924000011\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0962492924000011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这是一本关于自适应有限元方法(AFEMs)理论的研究报告,AFEMs 是现代计算科学和工程学的基础,但其数学评估却是一项艰巨的挑战。我们对线性二阶椭圆 PDEs 和维数 d > 1 的自适应有限元方法进行了自成一体的最新讨论,重点是基础问题。在简要回顾了函数分析和基本有限元理论(包括分级网格中的分次多项式逼近)之后,我们介绍了强制问题的核心材料。我们首先介绍一种适用于粗糙数据的新型后验误差分析,它提供了与解误差完全等效的估计值。根据数据结构,它们被用于设计和研究三种 AFEM。我们证明了这些算法的线性收敛性和速率最优性,前提是解和数据属于合适的近似类。我们还讨论了近似类和正则类之间的关系。最后,我们将这一理论推广到非连续 Galerkin 方法,将其作为非正则 AFEM 的原型,并将其超越强制问题,推广到 inf-sup 稳定 AFEM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive finite element methods

This is a survey of the theory of adaptive finite element methods (AFEMs), which are fundamental to modern computational science and engineering but whose mathematical assessment is a formidable challenge. We present a self-contained and up-to-date discussion of AFEMs for linear second-order elliptic PDEs and dimension d > 1, with emphasis on foundational issues. After a brief review of functional analysis and basic finite element theory, including piecewise polynomial approximation in graded meshes, we present the core material for coercive problems. We start with a novel a posteriori error analysis applicable to rough data, which delivers estimators fully equivalent to the solution error. They are used in the design and study of three AFEMs depending on the structure of data. We prove linear convergence of these algorithms and rate-optimality provided the solution and data belong to suitable approximation classes. We also address the relation between approximation and regularity classes. We finally extend this theory to discontinuous Galerkin methods as prototypes of non-conforming AFEMs, and beyond coercive problems to inf-sup stable AFEMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Numerica
Acta Numerica MATHEMATICS-
CiteScore
26.00
自引率
0.70%
发文量
7
期刊介绍: Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses. Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信