如何衡量传染病的可控性?

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Kris V. Parag
{"title":"如何衡量传染病的可控性?","authors":"Kris V. Parag","doi":"10.1103/physrevx.14.031041","DOIUrl":null,"url":null,"abstract":"Quantifying how difficult it is to control an emerging infectious disease is crucial to public health decision-making, providing valuable evidence on if targeted interventions, e.g., quarantine and isolation, can contain spread or when population wide controls, e.g., lockdowns, are warranted. The disease reproduction number <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> or growth rate <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> are universally assumed to measure controllability because <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><mo>=</mo><mn>1</mn></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math> define when infections stop growing and hence the state of critical stability. Outbreaks with larger <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> are therefore interpreted as less controllable and requiring more stringent interventions. We prove this common interpretation is impractical and incomplete. We identify a positive feedback loop among infections intrinsically underlying disease transmission and evaluate controllability from how interventions disrupt this loop. The epidemic gain and delay margins, which, respectively, define how much we can scale infections (this scaling is known as gain) or delay interventions on this loop before stability is lost, provide rigorous measures of controllability. Outbreaks with smaller margins necessitate more control effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, variant dynamics, and superspreading shape controllability and demonstrate that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> measure controllability only when interventions do not alter timings between the infections and are implemented without delay. Our margins are easily computed, interpreted, and reflect complex relationships among interventions, their implementation, and epidemiological dynamics.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"8 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Measure the Controllability of an Infectious Disease?\",\"authors\":\"Kris V. Parag\",\"doi\":\"10.1103/physrevx.14.031041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantifying how difficult it is to control an emerging infectious disease is crucial to public health decision-making, providing valuable evidence on if targeted interventions, e.g., quarantine and isolation, can contain spread or when population wide controls, e.g., lockdowns, are warranted. The disease reproduction number <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> or growth rate <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>r</mi></math> are universally assumed to measure controllability because <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>R</mi><mo>=</mo><mn>1</mn></mrow></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math> define when infections stop growing and hence the state of critical stability. Outbreaks with larger <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> or <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>r</mi></math> are therefore interpreted as less controllable and requiring more stringent interventions. We prove this common interpretation is impractical and incomplete. We identify a positive feedback loop among infections intrinsically underlying disease transmission and evaluate controllability from how interventions disrupt this loop. The epidemic gain and delay margins, which, respectively, define how much we can scale infections (this scaling is known as gain) or delay interventions on this loop before stability is lost, provide rigorous measures of controllability. Outbreaks with smaller margins necessitate more control effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, variant dynamics, and superspreading shape controllability and demonstrate that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>r</mi></math> measure controllability only when interventions do not alter timings between the infections and are implemented without delay. Our margins are easily computed, interpreted, and reflect complex relationships among interventions, their implementation, and epidemiological dynamics.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.031041\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031041","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量化控制新发传染病的难度对于公共卫生决策至关重要,它提供了有价值的证据,说明检疫和隔离等有针对性的干预措施是否能遏制传播,或何时需要进行全人群控制,如封锁。疾病繁殖数 R 或增长率 r 被普遍假定为衡量可控性的指标,因为 R=1 和 r=0 定义了感染停止增长的时间,也就是临界稳定状态。因此,R 或 r 越大的疫情被解释为可控性越差,需要更严格的干预措施。我们证明了这种常见的解释是不切实际和不全面的。我们确定了疾病传播内在的感染之间的正反馈循环,并从干预措施如何破坏这一循环来评估可控性。流行病增益边际和延迟边际分别定义了在失去稳定性之前,我们能在多大程度上扩大感染规模(这种扩大被称为增益)或延迟对这一循环的干预,它们为可控性提供了严格的衡量标准。裕度越小的疫情爆发越需要更多的控制努力。利用这些边际值,我们量化了无症状传播、监控限制、变异动态和超级传播是如何影响可控性的,并证明只有当干预措施不改变感染之间的时间间隔且无延迟实施时,R 和 r 才能衡量可控性。我们的边际值易于计算和解释,并能反映干预措施、其实施和流行病学动态之间的复杂关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

How to Measure the Controllability of an Infectious Disease?

How to Measure the Controllability of an Infectious Disease?
Quantifying how difficult it is to control an emerging infectious disease is crucial to public health decision-making, providing valuable evidence on if targeted interventions, e.g., quarantine and isolation, can contain spread or when population wide controls, e.g., lockdowns, are warranted. The disease reproduction number R or growth rate r are universally assumed to measure controllability because R=1 and r=0 define when infections stop growing and hence the state of critical stability. Outbreaks with larger R or r are therefore interpreted as less controllable and requiring more stringent interventions. We prove this common interpretation is impractical and incomplete. We identify a positive feedback loop among infections intrinsically underlying disease transmission and evaluate controllability from how interventions disrupt this loop. The epidemic gain and delay margins, which, respectively, define how much we can scale infections (this scaling is known as gain) or delay interventions on this loop before stability is lost, provide rigorous measures of controllability. Outbreaks with smaller margins necessitate more control effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, variant dynamics, and superspreading shape controllability and demonstrate that R and r measure controllability only when interventions do not alter timings between the infections and are implemented without delay. Our margins are easily computed, interpreted, and reflect complex relationships among interventions, their implementation, and epidemiological dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信