{"title":"优化雷达功能:开发带宽更高的可转向贴片天线阵列","authors":"Mubarak Alanazi;Aladdin Assisi","doi":"10.1029/2024RS008004","DOIUrl":null,"url":null,"abstract":"Today, wireless communication systems need an antenna with a high gain, efficiency and beamsteering, as well as broadband capability, especially important in radar communications. The array antenna is commonly used in many applications due to its advantages, such as high gain and wide bandwidth. This paper presents an advanced design of a horizontally steerable planar antenna array intended for significant radar applications. A novel structure is used to create a compact array antenna of 8 × 3 elements. The design features a comprehensive 60° steering sector alongside a notable 12% bandwidth (4.45—5.42 GHz), using 8 × 3 planar array in an novel configuration. A three-element series-fed vertical array is utilized, employing aperture feeds with precisely sized patches to maximize performance. A detailed description of the design and refinement process of this array is presented, with emphasis on its exceptional capabilities for horizontal steering and bandwidth efficiency. By employing series-fed vertical arrays with variable patch dimensions, we have successfully developed an antenna array that meets the stringent bandwidth requirements essential for radar technology, thereby enhancing the operational versatility of radar systems.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-11"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing radar functionality: Development of a steerable patch antenna array with enhanced bandwidth\",\"authors\":\"Mubarak Alanazi;Aladdin Assisi\",\"doi\":\"10.1029/2024RS008004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, wireless communication systems need an antenna with a high gain, efficiency and beamsteering, as well as broadband capability, especially important in radar communications. The array antenna is commonly used in many applications due to its advantages, such as high gain and wide bandwidth. This paper presents an advanced design of a horizontally steerable planar antenna array intended for significant radar applications. A novel structure is used to create a compact array antenna of 8 × 3 elements. The design features a comprehensive 60° steering sector alongside a notable 12% bandwidth (4.45—5.42 GHz), using 8 × 3 planar array in an novel configuration. A three-element series-fed vertical array is utilized, employing aperture feeds with precisely sized patches to maximize performance. A detailed description of the design and refinement process of this array is presented, with emphasis on its exceptional capabilities for horizontal steering and bandwidth efficiency. By employing series-fed vertical arrays with variable patch dimensions, we have successfully developed an antenna array that meets the stringent bandwidth requirements essential for radar technology, thereby enhancing the operational versatility of radar systems.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 8\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663903/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663903/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Optimizing radar functionality: Development of a steerable patch antenna array with enhanced bandwidth
Today, wireless communication systems need an antenna with a high gain, efficiency and beamsteering, as well as broadband capability, especially important in radar communications. The array antenna is commonly used in many applications due to its advantages, such as high gain and wide bandwidth. This paper presents an advanced design of a horizontally steerable planar antenna array intended for significant radar applications. A novel structure is used to create a compact array antenna of 8 × 3 elements. The design features a comprehensive 60° steering sector alongside a notable 12% bandwidth (4.45—5.42 GHz), using 8 × 3 planar array in an novel configuration. A three-element series-fed vertical array is utilized, employing aperture feeds with precisely sized patches to maximize performance. A detailed description of the design and refinement process of this array is presented, with emphasis on its exceptional capabilities for horizontal steering and bandwidth efficiency. By employing series-fed vertical arrays with variable patch dimensions, we have successfully developed an antenna array that meets the stringent bandwidth requirements essential for radar technology, thereby enhancing the operational versatility of radar systems.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.