具有大中心的顶点代数和卡兹丹-卢兹蒂希对应关系

IF 1.5 1区 数学 Q1 MATHEMATICS
Boris L. Feigin , Simon D. Lentner
{"title":"具有大中心的顶点代数和卡兹丹-卢兹蒂希对应关系","authors":"Boris L. Feigin ,&nbsp;Simon D. Lentner","doi":"10.1016/j.aim.2024.109904","DOIUrl":null,"url":null,"abstract":"<div><p>We study the semiclassical limit <span><math><mi>κ</mi><mo>→</mo><mo>∞</mo></math></span> of the generalized quantum Langlands kernel associated to a Lie algebra <span><math><mi>g</mi></math></span> and an integer level <em>p</em>. This vertex algebra acquires a big centre, containing the ring of functions over the space of <span><math><mi>g</mi></math></span>-connections. We conjecture that the fibre over the zero connection is the Feigin-Tipunin vertex algebra, whose category of representations should be equivalent to the small quantum group, and that the other fibres are precisely its twisted modules, and that the entire category of representations is related to the quantum group with a big centre. In this sense we present a generalized Kazhdan-Lusztig conjecture, involving deformations by any <span><math><mi>g</mi></math></span>-connection. We prove our conjectures in small cases <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mn>2</mn><mo>)</mo></math></span> by explicitly computing all vertex algebras and categories involved.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109904"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertex algebras with big centre and a Kazhdan-Lusztig correspondence\",\"authors\":\"Boris L. Feigin ,&nbsp;Simon D. Lentner\",\"doi\":\"10.1016/j.aim.2024.109904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the semiclassical limit <span><math><mi>κ</mi><mo>→</mo><mo>∞</mo></math></span> of the generalized quantum Langlands kernel associated to a Lie algebra <span><math><mi>g</mi></math></span> and an integer level <em>p</em>. This vertex algebra acquires a big centre, containing the ring of functions over the space of <span><math><mi>g</mi></math></span>-connections. We conjecture that the fibre over the zero connection is the Feigin-Tipunin vertex algebra, whose category of representations should be equivalent to the small quantum group, and that the other fibres are precisely its twisted modules, and that the entire category of representations is related to the quantum group with a big centre. In this sense we present a generalized Kazhdan-Lusztig conjecture, involving deformations by any <span><math><mi>g</mi></math></span>-connection. We prove our conjectures in small cases <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mn>2</mn><mo>)</mo></math></span> by explicitly computing all vertex algebras and categories involved.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109904\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004195\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004195","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与李代数 g 和整数级 p 相关的广义量子朗兰兹核的半经典极限 κ→∞。这个顶点代数获得了一个大中心,包含了 g 连接空间上的函数环。我们猜想,零连接上的纤维是费金-提普宁顶点代数,它的表示范畴应该等价于小量子群,而其他纤维正是它的扭转模块,整个表示范畴与具有大中心的量子群相关。在这个意义上,我们提出了一个广义的卡兹丹-卢兹蒂格猜想,涉及任意 g 连接的变形。我们通过明确计算所涉及的所有顶点代数和范畴,证明了我们在 (g,1) 和 (sl2,2) 两种小情况下的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertex algebras with big centre and a Kazhdan-Lusztig correspondence

We study the semiclassical limit κ of the generalized quantum Langlands kernel associated to a Lie algebra g and an integer level p. This vertex algebra acquires a big centre, containing the ring of functions over the space of g-connections. We conjecture that the fibre over the zero connection is the Feigin-Tipunin vertex algebra, whose category of representations should be equivalent to the small quantum group, and that the other fibres are precisely its twisted modules, and that the entire category of representations is related to the quantum group with a big centre. In this sense we present a generalized Kazhdan-Lusztig conjecture, involving deformations by any g-connection. We prove our conjectures in small cases (g,1) and (sl2,2) by explicitly computing all vertex algebras and categories involved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信