编码移位空间的遍历理论

IF 1.5 1区 数学 Q1 MATHEMATICS
Tamara Kucherenko , Martin Schmoll , Christian Wolf
{"title":"编码移位空间的遍历理论","authors":"Tamara Kucherenko ,&nbsp;Martin Schmoll ,&nbsp;Christian Wolf","doi":"10.1016/j.aim.2024.109913","DOIUrl":null,"url":null,"abstract":"<div><p>We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga <span><span>[9]</span></span>, Climenhaga and Thompson <span><span>[10]</span></span>, <span><span>[11]</span></span>, and Pavlov <span><span>[25]</span></span>.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109913"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ergodic theory on coded shift spaces\",\"authors\":\"Tamara Kucherenko ,&nbsp;Martin Schmoll ,&nbsp;Christian Wolf\",\"doi\":\"10.1016/j.aim.2024.109913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga <span><span>[9]</span></span>, Climenhaga and Thompson <span><span>[10]</span></span>, <span><span>[11]</span></span>, and Pavlov <span><span>[25]</span></span>.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109913\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004286\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004286","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究编码移位空间的遍历理论特性。编码移位空间被定义为来自固定可数生成集的所有双无限串联词的闭包。我们基于将编码移位划分为其连接集(生成词的连接序列)和残差集(在闭合下添加的序列),推导出了最大熵和霍尔德连续势均衡状态测量的唯一性的充分条件。在这种情况下,我们对最大熵的度量进行了简单明了的描述。我们还获得了连接集和残差集上熵的弹性结果。最后,我们证明了内在遍历编码移位空间的局部结构定理,这表明与 Climenhaga [9]、Climenhaga 和 Thompson [10]、[11] 以及 Pavlov [25] 以前的著作相比,我们的结果适用于更大类别的编码移位空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ergodic theory on coded shift spaces

We study ergodic-theoretic properties of coded shift spaces. A coded shift space is defined as a closure of all bi-infinite concatenations of words from a fixed countable generating set. We derive sufficient conditions for the uniqueness of measures of maximal entropy and equilibrium states of Hölder continuous potentials based on the partition of the coded shift into its concatenation set (sequences that are concatenations of generating words) and its residual set (sequences added under the closure). In this case we provide a simple explicit description of the measure of maximal entropy. We also obtain flexibility results for the entropy on the concatenation and residual sets. Finally, we prove a local structure theorem for intrinsically ergodic coded shift spaces which shows that our results apply to a larger class of coded shift spaces compared to previous works by Climenhaga [9], Climenhaga and Thompson [10], [11], and Pavlov [25].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信