GINet:用于光学遥感图像中突出物体检测的具有语义引导空间细化功能的图交互网络

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chenwei Zhu , Xiaofei Zhou , Liuxin Bao , Hongkui Wang , Shuai Wang , Zunjie Zhu , Chenggang Yan , Jiyong Zhang
{"title":"GINet:用于光学遥感图像中突出物体检测的具有语义引导空间细化功能的图交互网络","authors":"Chenwei Zhu ,&nbsp;Xiaofei Zhou ,&nbsp;Liuxin Bao ,&nbsp;Hongkui Wang ,&nbsp;Shuai Wang ,&nbsp;Zunjie Zhu ,&nbsp;Chenggang Yan ,&nbsp;Jiyong Zhang","doi":"10.1016/j.jvcir.2024.104257","DOIUrl":null,"url":null,"abstract":"<div><p>There are many challenging scenarios in the task of salient object detection in optical remote sensing images (RSIs), such as various scales and irregular shapes of salient objects, cluttered backgrounds, <em>etc</em>. Therefore, it is difficult to directly apply saliency models targeting natural scene images to optical RSIs. Besides, existing models often do not give sufficient exploration for the potential relationship of different salient objects or different parts of the salient object. In this paper, we propose a graph interaction network (<em>i.e.</em> GINet) with semantic-guided spatial refinement to conduct salient object detection in optical RSIs. The key advantages of GINet lie in two points. Firstly, the graph interactive reasoning (GIR) module conducts information exchange of different-level features via the graph interaction operation, and enhances features along spatial and channel dimensions via the graph reasoning operation. Secondly, we designed the global content-aware refinement (GCR) module, which incorporates the foreground and background feature-based local information and the semantic feature-based global information simultaneously. Experiments results on two public optical RSIs datasets clearly show the effectiveness and superiority of the proposed GINet when compared with the state-of-the-art models.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104257"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GINet:Graph interactive network with semantic-guided spatial refinement for salient object detection in optical remote sensing images\",\"authors\":\"Chenwei Zhu ,&nbsp;Xiaofei Zhou ,&nbsp;Liuxin Bao ,&nbsp;Hongkui Wang ,&nbsp;Shuai Wang ,&nbsp;Zunjie Zhu ,&nbsp;Chenggang Yan ,&nbsp;Jiyong Zhang\",\"doi\":\"10.1016/j.jvcir.2024.104257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There are many challenging scenarios in the task of salient object detection in optical remote sensing images (RSIs), such as various scales and irregular shapes of salient objects, cluttered backgrounds, <em>etc</em>. Therefore, it is difficult to directly apply saliency models targeting natural scene images to optical RSIs. Besides, existing models often do not give sufficient exploration for the potential relationship of different salient objects or different parts of the salient object. In this paper, we propose a graph interaction network (<em>i.e.</em> GINet) with semantic-guided spatial refinement to conduct salient object detection in optical RSIs. The key advantages of GINet lie in two points. Firstly, the graph interactive reasoning (GIR) module conducts information exchange of different-level features via the graph interaction operation, and enhances features along spatial and channel dimensions via the graph reasoning operation. Secondly, we designed the global content-aware refinement (GCR) module, which incorporates the foreground and background feature-based local information and the semantic feature-based global information simultaneously. Experiments results on two public optical RSIs datasets clearly show the effectiveness and superiority of the proposed GINet when compared with the state-of-the-art models.</p></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"104 \",\"pages\":\"Article 104257\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104732032400213X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104732032400213X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在光学遥感图像(RSIs)中检测突出物体的任务有许多具有挑战性的场景,例如突出物体的不同尺度和不规则形状、杂乱的背景等。因此,很难将针对自然场景图像的显著性模型直接应用于光学遥感图像。此外,现有模型往往不能充分挖掘不同突出物体或突出物体不同部分之间的潜在关系。在本文中,我们提出了一种具有语义引导空间细化功能的图交互网络(即 GINet),用于在光学 RSI 中进行突出对象检测。GINet 的主要优势在于两点。首先,图交互推理(GIR)模块通过图交互操作进行不同层次特征的信息交换,并通过图推理操作增强空间和通道维度的特征。其次,我们设计了全局内容感知细化(GCR)模块,该模块同时整合了基于前景和背景特征的局部信息和基于语义特征的全局信息。在两个公开的光学 RSI 数据集上的实验结果清楚地表明,与最先进的模型相比,所提出的 GINet 非常有效和优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GINet:Graph interactive network with semantic-guided spatial refinement for salient object detection in optical remote sensing images

There are many challenging scenarios in the task of salient object detection in optical remote sensing images (RSIs), such as various scales and irregular shapes of salient objects, cluttered backgrounds, etc. Therefore, it is difficult to directly apply saliency models targeting natural scene images to optical RSIs. Besides, existing models often do not give sufficient exploration for the potential relationship of different salient objects or different parts of the salient object. In this paper, we propose a graph interaction network (i.e. GINet) with semantic-guided spatial refinement to conduct salient object detection in optical RSIs. The key advantages of GINet lie in two points. Firstly, the graph interactive reasoning (GIR) module conducts information exchange of different-level features via the graph interaction operation, and enhances features along spatial and channel dimensions via the graph reasoning operation. Secondly, we designed the global content-aware refinement (GCR) module, which incorporates the foreground and background feature-based local information and the semantic feature-based global information simultaneously. Experiments results on two public optical RSIs datasets clearly show the effectiveness and superiority of the proposed GINet when compared with the state-of-the-art models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信