Xuehai Wu, Parameshwaran Pasupathy, Assimina A. Pelegri
{"title":"论混合深度三维卷积神经网络算法在预测脑白质微观力学中的应用","authors":"Xuehai Wu, Parameshwaran Pasupathy, Assimina A. Pelegri","doi":"10.1016/j.cmpb.2024.108381","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><p>Material characterization of brain white matter (BWM) is difficult due to the anisotropy inherent to the three-dimensional microstructure and the various interactions between heterogeneous brain-tissue (axon, myelin, and glia). Developing full scale finite element models that accurately represent the relationship between the micro and macroscale BWM is however extremely challenging and computationally expensive. The anisotropic properties of the microstructure of BWM computed by building unit cells under frequency domain viscoelasticity comprises of 36 individual constants each, for the loss and storage moduli. Furthermore, the architecture of each unit cell is arbitrary in an infinite dataset.</p></div><div><h3>Methods:</h3><p>In this study, we extend our previous work on developing representative volume elements (RVE) of the microstructure of the BWM in the frequency domain to develop 3D deep learning algorithms that can predict the anisotropic composite properties. The deep 3D convolutional neural network (CNN) algorithms utilizes a voxelization method to obtain geometry information from 3D RVEs. The architecture information encoded in the voxelized location is employed as input data while cross-referencing the RVEs’ material properties (output data). We further develop methods by incorporating parallel pathways, Residual Neural Networks and inception modulus that improve the efficiency of deep learning algorithms.</p></div><div><h3>Results:</h3><p>This paper presents different CNN algorithms in predicting the anisotropic composite properties of BWM. A quantitative analysis of the individual algorithms is presented with the view of identifying optimal strategies to interpret the combined measurements of brain MRE and DTI.</p></div><div><h3>Significance:</h3><p>The proposed Multiscale 3D ResNet (M3DR) algorithm demonstrates high learning ability and performance over baseline CNN algorithms in predicting BWM tissue properties. The hybrid M3DR framework also overcomes the significant limitations encountered in modeling brain tissue using finite elements alone including those such as high computational cost, mesh and simulation failure. The proposed framework also provides an efficient and streamlined platform for implementing complex boundary conditions, modeling intrinsic material properties and imparting interfacial architecture information.</p></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"256 ","pages":"Article 108381"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169260724003742/pdfft?md5=818301a4a6839e1068c6a07de77c2cc5&pid=1-s2.0-S0169260724003742-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the application of hybrid deep 3D convolutional neural network algorithms for predicting the micromechanics of brain white matter\",\"authors\":\"Xuehai Wu, Parameshwaran Pasupathy, Assimina A. Pelegri\",\"doi\":\"10.1016/j.cmpb.2024.108381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background:</h3><p>Material characterization of brain white matter (BWM) is difficult due to the anisotropy inherent to the three-dimensional microstructure and the various interactions between heterogeneous brain-tissue (axon, myelin, and glia). Developing full scale finite element models that accurately represent the relationship between the micro and macroscale BWM is however extremely challenging and computationally expensive. The anisotropic properties of the microstructure of BWM computed by building unit cells under frequency domain viscoelasticity comprises of 36 individual constants each, for the loss and storage moduli. Furthermore, the architecture of each unit cell is arbitrary in an infinite dataset.</p></div><div><h3>Methods:</h3><p>In this study, we extend our previous work on developing representative volume elements (RVE) of the microstructure of the BWM in the frequency domain to develop 3D deep learning algorithms that can predict the anisotropic composite properties. The deep 3D convolutional neural network (CNN) algorithms utilizes a voxelization method to obtain geometry information from 3D RVEs. The architecture information encoded in the voxelized location is employed as input data while cross-referencing the RVEs’ material properties (output data). We further develop methods by incorporating parallel pathways, Residual Neural Networks and inception modulus that improve the efficiency of deep learning algorithms.</p></div><div><h3>Results:</h3><p>This paper presents different CNN algorithms in predicting the anisotropic composite properties of BWM. A quantitative analysis of the individual algorithms is presented with the view of identifying optimal strategies to interpret the combined measurements of brain MRE and DTI.</p></div><div><h3>Significance:</h3><p>The proposed Multiscale 3D ResNet (M3DR) algorithm demonstrates high learning ability and performance over baseline CNN algorithms in predicting BWM tissue properties. The hybrid M3DR framework also overcomes the significant limitations encountered in modeling brain tissue using finite elements alone including those such as high computational cost, mesh and simulation failure. The proposed framework also provides an efficient and streamlined platform for implementing complex boundary conditions, modeling intrinsic material properties and imparting interfacial architecture information.</p></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"256 \",\"pages\":\"Article 108381\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169260724003742/pdfft?md5=818301a4a6839e1068c6a07de77c2cc5&pid=1-s2.0-S0169260724003742-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724003742\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724003742","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the application of hybrid deep 3D convolutional neural network algorithms for predicting the micromechanics of brain white matter
Background:
Material characterization of brain white matter (BWM) is difficult due to the anisotropy inherent to the three-dimensional microstructure and the various interactions between heterogeneous brain-tissue (axon, myelin, and glia). Developing full scale finite element models that accurately represent the relationship between the micro and macroscale BWM is however extremely challenging and computationally expensive. The anisotropic properties of the microstructure of BWM computed by building unit cells under frequency domain viscoelasticity comprises of 36 individual constants each, for the loss and storage moduli. Furthermore, the architecture of each unit cell is arbitrary in an infinite dataset.
Methods:
In this study, we extend our previous work on developing representative volume elements (RVE) of the microstructure of the BWM in the frequency domain to develop 3D deep learning algorithms that can predict the anisotropic composite properties. The deep 3D convolutional neural network (CNN) algorithms utilizes a voxelization method to obtain geometry information from 3D RVEs. The architecture information encoded in the voxelized location is employed as input data while cross-referencing the RVEs’ material properties (output data). We further develop methods by incorporating parallel pathways, Residual Neural Networks and inception modulus that improve the efficiency of deep learning algorithms.
Results:
This paper presents different CNN algorithms in predicting the anisotropic composite properties of BWM. A quantitative analysis of the individual algorithms is presented with the view of identifying optimal strategies to interpret the combined measurements of brain MRE and DTI.
Significance:
The proposed Multiscale 3D ResNet (M3DR) algorithm demonstrates high learning ability and performance over baseline CNN algorithms in predicting BWM tissue properties. The hybrid M3DR framework also overcomes the significant limitations encountered in modeling brain tissue using finite elements alone including those such as high computational cost, mesh and simulation failure. The proposed framework also provides an efficient and streamlined platform for implementing complex boundary conditions, modeling intrinsic material properties and imparting interfacial architecture information.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.