深度异构联合架构:燃料性能代码的时频替代模型

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
{"title":"深度异构联合架构:燃料性能代码的时频替代模型","authors":"","doi":"10.1016/j.anucene.2024.110893","DOIUrl":null,"url":null,"abstract":"<div><p>Fuel performance codes, such as Transuranus, predict fuel behavior and are used to ensure the safe operation of nuclear reactors. These codes are moderately time-consuming and affordable in many applications but may be limited in others, primarily when many fuel rods must be evaluated simultaneously. This work presents how the temporal neural network techniques, Temporal Convolutional Networks, and a Fourier Neural Operator can be combined to form a deep heterogeneous joint architecture as a surrogate model for fuel performance modeling in time-critical situations. We train the model using realistic power histories and corresponding outputs generated using the fuel performance code Transuranus. The ultimate result is a surrogate model for use in time-critical situations that take milliseconds to evaluate for thousands of fuel rods and have a mean test error of unseen data around a few percent.</p></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306454924005565/pdfft?md5=431bd9305cd2743a6c6922d80cdd60f5&pid=1-s2.0-S0306454924005565-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep heterogeneous joint architecture: A temporal frequency surrogate model for fuel performance codes\",\"authors\":\"\",\"doi\":\"10.1016/j.anucene.2024.110893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fuel performance codes, such as Transuranus, predict fuel behavior and are used to ensure the safe operation of nuclear reactors. These codes are moderately time-consuming and affordable in many applications but may be limited in others, primarily when many fuel rods must be evaluated simultaneously. This work presents how the temporal neural network techniques, Temporal Convolutional Networks, and a Fourier Neural Operator can be combined to form a deep heterogeneous joint architecture as a surrogate model for fuel performance modeling in time-critical situations. We train the model using realistic power histories and corresponding outputs generated using the fuel performance code Transuranus. The ultimate result is a surrogate model for use in time-critical situations that take milliseconds to evaluate for thousands of fuel rods and have a mean test error of unseen data around a few percent.</p></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005565/pdfft?md5=431bd9305cd2743a6c6922d80cdd60f5&pid=1-s2.0-S0306454924005565-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005565\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924005565","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

燃料性能代码(如 Transuranus)可预测燃料行为,用于确保核反应堆的安全运行。在许多应用中,这些代码耗时适中且经济实惠,但在其他应用中可能会受到限制,主要是必须同时评估许多燃料棒时。这项研究介绍了如何将时态神经网络技术、时态卷积网络和傅立叶神经运算器结合起来,形成一个深度异构联合架构,作为时间临界情况下燃料性能建模的替代模型。我们使用现实的功率历史和使用燃料性能代码 Transuranus 生成的相应输出来训练模型。最终得到的结果是在时间临界情况下使用的代用模型,该模型对数千根燃料棒的评估需要几毫秒,未见数据的平均测试误差约为百分之几。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep heterogeneous joint architecture: A temporal frequency surrogate model for fuel performance codes

Fuel performance codes, such as Transuranus, predict fuel behavior and are used to ensure the safe operation of nuclear reactors. These codes are moderately time-consuming and affordable in many applications but may be limited in others, primarily when many fuel rods must be evaluated simultaneously. This work presents how the temporal neural network techniques, Temporal Convolutional Networks, and a Fourier Neural Operator can be combined to form a deep heterogeneous joint architecture as a surrogate model for fuel performance modeling in time-critical situations. We train the model using realistic power histories and corresponding outputs generated using the fuel performance code Transuranus. The ultimate result is a surrogate model for use in time-critical situations that take milliseconds to evaluate for thousands of fuel rods and have a mean test error of unseen data around a few percent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信