{"title":"论与模式序列相关的二进制词中的单色算术级数","authors":"Bartosz Sobolewski","doi":"10.1016/j.tcs.2024.114815","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of occurrences of a fixed pattern <em>v</em> in the binary expansion of <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. In this paper we study monochromatic arithmetic progressions in the class of binary words <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, which includes the famous Thue–Morse word <strong>t</strong> and Rudin–Shapiro word <strong>r</strong>. We prove that the length of a monochromatic arithmetic progression of difference <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> starting at 0 in <strong>r</strong> is at most <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>3</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, with equality for infinitely many <em>d</em>. We also compute the maximal length of a monochromatic arithmetic progression in <strong>r</strong> of difference <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span>. For a general pattern <em>v</em> we show that the maximal length of a monochromatic arithmetic progression of difference <em>d</em> is at most linear in <em>d</em>. Moreover, we prove that a linear lower bound holds for suitable subsequences <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of differences. We also offer a number of related problems and conjectures.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1018 ","pages":"Article 114815"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004328/pdfft?md5=f1b8c0a8a097177b0f698184130f8ee6&pid=1-s2.0-S0304397524004328-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On monochromatic arithmetic progressions in binary words associated with pattern sequences\",\"authors\":\"Bartosz Sobolewski\",\"doi\":\"10.1016/j.tcs.2024.114815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of occurrences of a fixed pattern <em>v</em> in the binary expansion of <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. In this paper we study monochromatic arithmetic progressions in the class of binary words <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, which includes the famous Thue–Morse word <strong>t</strong> and Rudin–Shapiro word <strong>r</strong>. We prove that the length of a monochromatic arithmetic progression of difference <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> starting at 0 in <strong>r</strong> is at most <span><math><mo>(</mo><mi>d</mi><mo>+</mo><mn>3</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, with equality for infinitely many <em>d</em>. We also compute the maximal length of a monochromatic arithmetic progression in <strong>r</strong> of difference <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span>. For a general pattern <em>v</em> we show that the maximal length of a monochromatic arithmetic progression of difference <em>d</em> is at most linear in <em>d</em>. Moreover, we prove that a linear lower bound holds for suitable subsequences <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of differences. We also offer a number of related problems and conjectures.</p></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1018 \",\"pages\":\"Article 114815\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004328/pdfft?md5=f1b8c0a8a097177b0f698184130f8ee6&pid=1-s2.0-S0304397524004328-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004328\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004328","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
让 ev(n) 表示固定模式 v 在 n∈N 的二进制扩展中出现的次数。本文将研究二进制词类 (ev(n)mod2)n≥0 中的单色算术级数,其中包括著名的 Thue-Morse 词 t 和 Rudin-Shapiro 词 r。我们证明,在 r 中,差值 d≥3 且从 0 开始的单色算术级数的长度最多为 (d+3)/2,对于无限多的 d,长度相等。我们还计算了 r 中差值为 2k-1 和 2k+1 的单色算术级数的最大长度。对于一般模式 v,我们证明了差值为 d 的单色算术级数的最大长度最多与 d 成线性关系。此外,我们还证明了对于差值 (dk)k≥0 的合适子序列,线性下界成立。我们还提出了一些相关问题和猜想。
On monochromatic arithmetic progressions in binary words associated with pattern sequences
Let denote the number of occurrences of a fixed pattern v in the binary expansion of . In this paper we study monochromatic arithmetic progressions in the class of binary words , which includes the famous Thue–Morse word t and Rudin–Shapiro word r. We prove that the length of a monochromatic arithmetic progression of difference starting at 0 in r is at most , with equality for infinitely many d. We also compute the maximal length of a monochromatic arithmetic progression in r of difference and . For a general pattern v we show that the maximal length of a monochromatic arithmetic progression of difference d is at most linear in d. Moreover, we prove that a linear lower bound holds for suitable subsequences of differences. We also offer a number of related problems and conjectures.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.