Federico Rossi, Cinzia Bernardeschi, Marco Cococcioni
{"title":"闭环系统中的神经网络:使用区间算术和形式验证器进行验证","authors":"Federico Rossi, Cinzia Bernardeschi, Marco Cococcioni","doi":"10.1016/j.engappai.2024.109238","DOIUrl":null,"url":null,"abstract":"<div><p>Machine Learning approaches have been successfully used for the creation of high-performance control components of cyber–physical systems, where the control dynamics result from the combination of many subsystems. However, these approaches may lack the trustworthiness required to guarantee their reliable application in a safety-critical context. In this paper, we propose a combination of interval arithmetic and theorem-proving verification techniques to analyze safety properties in closed-loop systems that embed neural network components. We show the application of the proposed approach to a model-predictive controller for autonomous driving comparing the neural network verification performance with other existing tools. The results show that open-loop neural network verification through interval arithmetic can outperform existing approaches proving properties with a smaller time overhead. Furthermore, we demonstrate the capability of combining the two approaches to construct a formal model of the network in higher-order logic of the controlled system in a closed-loop.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0952197624013964/pdfft?md5=b6516cb377ac30878211183c4317c0a3&pid=1-s2.0-S0952197624013964-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural networks in closed-loop systems: Verification using interval arithmetic and formal prover\",\"authors\":\"Federico Rossi, Cinzia Bernardeschi, Marco Cococcioni\",\"doi\":\"10.1016/j.engappai.2024.109238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine Learning approaches have been successfully used for the creation of high-performance control components of cyber–physical systems, where the control dynamics result from the combination of many subsystems. However, these approaches may lack the trustworthiness required to guarantee their reliable application in a safety-critical context. In this paper, we propose a combination of interval arithmetic and theorem-proving verification techniques to analyze safety properties in closed-loop systems that embed neural network components. We show the application of the proposed approach to a model-predictive controller for autonomous driving comparing the neural network verification performance with other existing tools. The results show that open-loop neural network verification through interval arithmetic can outperform existing approaches proving properties with a smaller time overhead. Furthermore, we demonstrate the capability of combining the two approaches to construct a formal model of the network in higher-order logic of the controlled system in a closed-loop.</p></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0952197624013964/pdfft?md5=b6516cb377ac30878211183c4317c0a3&pid=1-s2.0-S0952197624013964-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624013964\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624013964","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Neural networks in closed-loop systems: Verification using interval arithmetic and formal prover
Machine Learning approaches have been successfully used for the creation of high-performance control components of cyber–physical systems, where the control dynamics result from the combination of many subsystems. However, these approaches may lack the trustworthiness required to guarantee their reliable application in a safety-critical context. In this paper, we propose a combination of interval arithmetic and theorem-proving verification techniques to analyze safety properties in closed-loop systems that embed neural network components. We show the application of the proposed approach to a model-predictive controller for autonomous driving comparing the neural network verification performance with other existing tools. The results show that open-loop neural network verification through interval arithmetic can outperform existing approaches proving properties with a smaller time overhead. Furthermore, we demonstrate the capability of combining the two approaches to construct a formal model of the network in higher-order logic of the controlled system in a closed-loop.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.