使用示范毒物铜和定殖作为测试终点,评估对虾的生境选择:先前的接触是否决定了生化和行为反应?

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Freylan Mena , Cristiano V.M. Araújo , Silvia Echeverría-Sáenz , Gabriel Brenes-Bravo , Matilde Moreira-Santos
{"title":"使用示范毒物铜和定殖作为测试终点,评估对虾的生境选择:先前的接触是否决定了生化和行为反应?","authors":"Freylan Mena ,&nbsp;Cristiano V.M. Araújo ,&nbsp;Silvia Echeverría-Sáenz ,&nbsp;Gabriel Brenes-Bravo ,&nbsp;Matilde Moreira-Santos","doi":"10.1016/j.aquatox.2024.107073","DOIUrl":null,"url":null,"abstract":"<div><p>Habitat selection by aquatic organisms is dependent on the availability of adequate conditions to support life and the benefits that the habitat provides. Contaminated environments tend to be less attractive to organisms because reduced habitat quality leads to increased maintenance costs. Consequently, reduced colonization of such disturbed habitats is an expected response. However, colonization has been understudied as an ecotoxicological test endpoint, despite its proven ability to assess habitat selection by populations across various taxa. The aim of the present study was to investigate whether previous exposure to copper could alter the colonization behavior of the freshwater prawn <em>Macrobrachium rosenbergii</em> along a non-forced exposure gradient of interconnected copper-contaminated habitats (0 to 500 µg/L) due to physiological and behavioral impairments. To assess this, post-larvae of <em>M. rosenbergii</em> were pre-exposed to 0, 50, 250 and 500 µg/L copper for a maximum period of 48 h. The physiological status and motility of the organisms after pre-exposure to copper were evaluated using behavioral endpoints (swimming activity by video tracking) and biochemical biomarkers (biotransformation, oxidative stress and neurotoxicity). The results indicated that pre-exposure to copper (at concentrations of 0, 50 and 500 µg/L) significantly influenced the median colonization concentration (CC50), which decreased from 270 µg/L to 109 µg/L. None of the assessed swimming parameters (speed, motility rate, exploration rate, and total distance) were affected by the pre-exposure to copper (0, 50 and 250 µg/L). Biochemically, cholinesterase levels were only affected in the prawn population exposed to 250 µg/L of copper. The present study provides a better understanding of the relevance of colonization as an ecotoxicological endpoint for assessing the spatial distribution of populations, including both new inhabitants and previously exposed organisms, in recovering habitats.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing habitat selection in the prawn Macrobrachium rosenbergii using the model toxicant copper and colonization as a test endpoint: Does prior exposure determine biochemical and behavioral responses?\",\"authors\":\"Freylan Mena ,&nbsp;Cristiano V.M. Araújo ,&nbsp;Silvia Echeverría-Sáenz ,&nbsp;Gabriel Brenes-Bravo ,&nbsp;Matilde Moreira-Santos\",\"doi\":\"10.1016/j.aquatox.2024.107073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Habitat selection by aquatic organisms is dependent on the availability of adequate conditions to support life and the benefits that the habitat provides. Contaminated environments tend to be less attractive to organisms because reduced habitat quality leads to increased maintenance costs. Consequently, reduced colonization of such disturbed habitats is an expected response. However, colonization has been understudied as an ecotoxicological test endpoint, despite its proven ability to assess habitat selection by populations across various taxa. The aim of the present study was to investigate whether previous exposure to copper could alter the colonization behavior of the freshwater prawn <em>Macrobrachium rosenbergii</em> along a non-forced exposure gradient of interconnected copper-contaminated habitats (0 to 500 µg/L) due to physiological and behavioral impairments. To assess this, post-larvae of <em>M. rosenbergii</em> were pre-exposed to 0, 50, 250 and 500 µg/L copper for a maximum period of 48 h. The physiological status and motility of the organisms after pre-exposure to copper were evaluated using behavioral endpoints (swimming activity by video tracking) and biochemical biomarkers (biotransformation, oxidative stress and neurotoxicity). The results indicated that pre-exposure to copper (at concentrations of 0, 50 and 500 µg/L) significantly influenced the median colonization concentration (CC50), which decreased from 270 µg/L to 109 µg/L. None of the assessed swimming parameters (speed, motility rate, exploration rate, and total distance) were affected by the pre-exposure to copper (0, 50 and 250 µg/L). Biochemically, cholinesterase levels were only affected in the prawn population exposed to 250 µg/L of copper. The present study provides a better understanding of the relevance of colonization as an ecotoxicological endpoint for assessing the spatial distribution of populations, including both new inhabitants and previously exposed organisms, in recovering habitats.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24002431\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002431","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水生生物对栖息地的选择取决于是否有足够的条件支持生命以及栖息地提供的益处。受污染的环境对生物的吸引力往往较小,因为生境质量下降会导致维护成本增加。因此,这种受干扰栖息地的定殖减少是意料之中的反应。然而,尽管定殖作为生态毒理学测试终点的能力已被证明能够评估不同类群对栖息地的选择,但对它的研究一直不足。本研究的目的是探究先前的铜暴露是否会因生理和行为障碍而改变淡水对虾沿铜污染栖息地(0 至 500 µg/L)的非强迫暴露梯度的定殖行为。为了评估这一点,将鱼苗预先暴露于 0、50、250 和 500 µg/L 的铜中,最长时间为 48 小时。采用行为终点(通过视频追踪游泳活动)和生化生物标志物(生物转化、氧化应激和神经毒性)来评估鱼苗预先暴露于铜后的生理状态和运动能力。结果表明,预先接触铜(浓度为 0、50 和 500 微克/升)会显著影响中位定殖浓度(CC50),使其从 270 微克/升降至 109 微克/升。评估的游泳参数(速度、活动率、探索率和总距离)均未受到铜暴露前(0、50 和 250 µg/L)的影响。在生化方面,只有暴露于 250 微克/升铜的对虾群体的胆碱酯酶水平受到影响。本研究使人们更好地理解了定殖作为生态毒理学终点的相关性,它可用于评估正在恢复的生境中种群的空间分布,包括新居民和以前接触过铜的生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing habitat selection in the prawn Macrobrachium rosenbergii using the model toxicant copper and colonization as a test endpoint: Does prior exposure determine biochemical and behavioral responses?

Habitat selection by aquatic organisms is dependent on the availability of adequate conditions to support life and the benefits that the habitat provides. Contaminated environments tend to be less attractive to organisms because reduced habitat quality leads to increased maintenance costs. Consequently, reduced colonization of such disturbed habitats is an expected response. However, colonization has been understudied as an ecotoxicological test endpoint, despite its proven ability to assess habitat selection by populations across various taxa. The aim of the present study was to investigate whether previous exposure to copper could alter the colonization behavior of the freshwater prawn Macrobrachium rosenbergii along a non-forced exposure gradient of interconnected copper-contaminated habitats (0 to 500 µg/L) due to physiological and behavioral impairments. To assess this, post-larvae of M. rosenbergii were pre-exposed to 0, 50, 250 and 500 µg/L copper for a maximum period of 48 h. The physiological status and motility of the organisms after pre-exposure to copper were evaluated using behavioral endpoints (swimming activity by video tracking) and biochemical biomarkers (biotransformation, oxidative stress and neurotoxicity). The results indicated that pre-exposure to copper (at concentrations of 0, 50 and 500 µg/L) significantly influenced the median colonization concentration (CC50), which decreased from 270 µg/L to 109 µg/L. None of the assessed swimming parameters (speed, motility rate, exploration rate, and total distance) were affected by the pre-exposure to copper (0, 50 and 250 µg/L). Biochemically, cholinesterase levels were only affected in the prawn population exposed to 250 µg/L of copper. The present study provides a better understanding of the relevance of colonization as an ecotoxicological endpoint for assessing the spatial distribution of populations, including both new inhabitants and previously exposed organisms, in recovering habitats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信