{"title":"计算具有多个自由临界点的迭代寻根方法的参数平面","authors":"Beatriz Campos , Jordi Canela , Alberto Rodríguez-Arenas , Pura Vindel","doi":"10.1016/j.matcom.2024.08.013","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we present an algorithm to obtain the parameter planes of families of root-finding methods with several free critical points. The parameter planes show the joint behaviour of all critical points. This algorithm avoids the inconsistencies arising from the relationship between the different critical points as well as the indeterminacy caused by the square roots involved in their computation.</p><p>We analyse the suitability of this algorithm by drawing the parameter planes of different Newton-like methods with two and three critical points. We also present some results of the expressions of the Newton-like operators and their derivatives in terms of palindromic polynomials, and we show how to obtain the expression of the critical points of a Newton-like method with real coefficients.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"228 ","pages":"Pages 52-72"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037847542400315X/pdfft?md5=4956d6bd6975a5a866e9fd44c4e853f4&pid=1-s2.0-S037847542400315X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Computing parameter planes of iterative root-finding methods with several free critical points\",\"authors\":\"Beatriz Campos , Jordi Canela , Alberto Rodríguez-Arenas , Pura Vindel\",\"doi\":\"10.1016/j.matcom.2024.08.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we present an algorithm to obtain the parameter planes of families of root-finding methods with several free critical points. The parameter planes show the joint behaviour of all critical points. This algorithm avoids the inconsistencies arising from the relationship between the different critical points as well as the indeterminacy caused by the square roots involved in their computation.</p><p>We analyse the suitability of this algorithm by drawing the parameter planes of different Newton-like methods with two and three critical points. We also present some results of the expressions of the Newton-like operators and their derivatives in terms of palindromic polynomials, and we show how to obtain the expression of the critical points of a Newton-like method with real coefficients.</p></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"228 \",\"pages\":\"Pages 52-72\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S037847542400315X/pdfft?md5=4956d6bd6975a5a866e9fd44c4e853f4&pid=1-s2.0-S037847542400315X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037847542400315X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037847542400315X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computing parameter planes of iterative root-finding methods with several free critical points
In this paper we present an algorithm to obtain the parameter planes of families of root-finding methods with several free critical points. The parameter planes show the joint behaviour of all critical points. This algorithm avoids the inconsistencies arising from the relationship between the different critical points as well as the indeterminacy caused by the square roots involved in their computation.
We analyse the suitability of this algorithm by drawing the parameter planes of different Newton-like methods with two and three critical points. We also present some results of the expressions of the Newton-like operators and their derivatives in terms of palindromic polynomials, and we show how to obtain the expression of the critical points of a Newton-like method with real coefficients.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.