{"title":"基于区块链和集合学习的物联网安全认证框架","authors":"Wenxian Jiang , Xianglong Lv , Jun Tao","doi":"10.1016/j.vehcom.2024.100836","DOIUrl":null,"url":null,"abstract":"<div><p>A secure authentication framework based on blockchain and ensemble learning is proposed to address the problem that vehicle identity privacy data in Internet of Vehicles (IoV) is vulnerable to theft and tampering. First, a secure and efficient authentication method based on blockchain and Physical Unclonable Function (PUF) is implemented, which ensures the identity privacy of the vehicle when accessing IoV, and improves the problem of high resource overhead of the traditional IoV authentication scheme while guaranteeing security, and the computational overhead is about 2.424 ms at the first level of security framework. Secondly, an intrusion detection method based on Whale Optimization Algorithm (WOA) and Extreme Gradient Boosting (XGBoost) is proposed, and the detection model trained based on this method can effectively detect various attacks against IoV. As a security method at the second level of secure framework, the method outperforms related works in detecting malicious attacks with a detection accuracy of 98.41% for ToN-IoT and 99.99% for BoT-IoT.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"50 ","pages":"Article 100836"},"PeriodicalIF":5.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A secure authentication framework for IoV based on blockchain and ensemble learning\",\"authors\":\"Wenxian Jiang , Xianglong Lv , Jun Tao\",\"doi\":\"10.1016/j.vehcom.2024.100836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A secure authentication framework based on blockchain and ensemble learning is proposed to address the problem that vehicle identity privacy data in Internet of Vehicles (IoV) is vulnerable to theft and tampering. First, a secure and efficient authentication method based on blockchain and Physical Unclonable Function (PUF) is implemented, which ensures the identity privacy of the vehicle when accessing IoV, and improves the problem of high resource overhead of the traditional IoV authentication scheme while guaranteeing security, and the computational overhead is about 2.424 ms at the first level of security framework. Secondly, an intrusion detection method based on Whale Optimization Algorithm (WOA) and Extreme Gradient Boosting (XGBoost) is proposed, and the detection model trained based on this method can effectively detect various attacks against IoV. As a security method at the second level of secure framework, the method outperforms related works in detecting malicious attacks with a detection accuracy of 98.41% for ToN-IoT and 99.99% for BoT-IoT.</p></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":\"50 \",\"pages\":\"Article 100836\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214209624001116\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624001116","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A secure authentication framework for IoV based on blockchain and ensemble learning
A secure authentication framework based on blockchain and ensemble learning is proposed to address the problem that vehicle identity privacy data in Internet of Vehicles (IoV) is vulnerable to theft and tampering. First, a secure and efficient authentication method based on blockchain and Physical Unclonable Function (PUF) is implemented, which ensures the identity privacy of the vehicle when accessing IoV, and improves the problem of high resource overhead of the traditional IoV authentication scheme while guaranteeing security, and the computational overhead is about 2.424 ms at the first level of security framework. Secondly, an intrusion detection method based on Whale Optimization Algorithm (WOA) and Extreme Gradient Boosting (XGBoost) is proposed, and the detection model trained based on this method can effectively detect various attacks against IoV. As a security method at the second level of secure framework, the method outperforms related works in detecting malicious attacks with a detection accuracy of 98.41% for ToN-IoT and 99.99% for BoT-IoT.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.