评估哺乳动物皮层中细胞类型特异性增强子的预测方法

Nelson J Johansen, Niklas Kempynck, Nathan R Zemke, Saroja Somasundaram, Seppe De Winter, Marcus Hooper, Deepanjali Dwivedi, Ruchi Lohia, Fabien Wehbe, Bocheng Li, Darina Abaffyová, Ethan J Armand, Julie De Man, Eren Can Eksi, Nikolai Hecker, Gert Hulselmans, Vasilis Konstantakos, David Mauduit, John K Mich, Gabriele Partel, Tanya L Daigle, Boaz P Levi, Kai Zhang, Yoshiaki Tanaka, Jesse Gillis, Jonathan T Ting, Yoav Ben-Simon, Jeremy Miller, Joseph R Ecker, Bing Ren, Stein Aerts, Ed S Lein, Bosiljka Tasic, Trygve E Bakken
{"title":"评估哺乳动物皮层中细胞类型特异性增强子的预测方法","authors":"Nelson J Johansen, Niklas Kempynck, Nathan R Zemke, Saroja Somasundaram, Seppe De Winter, Marcus Hooper, Deepanjali Dwivedi, Ruchi Lohia, Fabien Wehbe, Bocheng Li, Darina Abaffyová, Ethan J Armand, Julie De Man, Eren Can Eksi, Nikolai Hecker, Gert Hulselmans, Vasilis Konstantakos, David Mauduit, John K Mich, Gabriele Partel, Tanya L Daigle, Boaz P Levi, Kai Zhang, Yoshiaki Tanaka, Jesse Gillis, Jonathan T Ting, Yoav Ben-Simon, Jeremy Miller, Joseph R Ecker, Bing Ren, Stein Aerts, Ed S Lein, Bosiljka Tasic, Trygve E Bakken","doi":"10.1101/2024.08.21.609075","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the 'Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics' to assess machine learning and feature-based methods designed to nominate enhancer DNA sequences to target cell types in the mouse cortex. Methods were evaluated based on <i>in vivo</i> validation data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of functional enhancers, and sequence models improved prediction of non-functional enhancers that can be deprioritized as opposed to pursued for <i>in vivo</i> testing. Sequence models also identified cell type-specific transcription factor codes that can guide designs of <i>in silico</i> enhancers. This community challenge establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches and molecular information that are crucial for identifying functional enhancers in mammalian cortical cell types. The results of this challenge bring us closer to understanding the complex gene regulatory landscape of the mammalian cortex and to designing more efficient genetic tools to target cortical cell types.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating Methods for the Prediction of Cell Type-Specific Enhancers in the Mammalian Cortex.\",\"authors\":\"Nelson J Johansen, Niklas Kempynck, Nathan R Zemke, Saroja Somasundaram, Seppe De Winter, Marcus Hooper, Deepanjali Dwivedi, Ruchi Lohia, Fabien Wehbe, Bocheng Li, Darina Abaffyová, Ethan J Armand, Julie De Man, Eren Can Eksi, Nikolai Hecker, Gert Hulselmans, Vasilis Konstantakos, David Mauduit, John K Mich, Gabriele Partel, Tanya L Daigle, Boaz P Levi, Kai Zhang, Yoshiaki Tanaka, Jesse Gillis, Jonathan T Ting, Yoav Ben-Simon, Jeremy Miller, Joseph R Ecker, Bing Ren, Stein Aerts, Ed S Lein, Bosiljka Tasic, Trygve E Bakken\",\"doi\":\"10.1101/2024.08.21.609075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the 'Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics' to assess machine learning and feature-based methods designed to nominate enhancer DNA sequences to target cell types in the mouse cortex. Methods were evaluated based on <i>in vivo</i> validation data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of functional enhancers, and sequence models improved prediction of non-functional enhancers that can be deprioritized as opposed to pursued for <i>in vivo</i> testing. Sequence models also identified cell type-specific transcription factor codes that can guide designs of <i>in silico</i> enhancers. This community challenge establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches and molecular information that are crucial for identifying functional enhancers in mammalian cortical cell types. The results of this challenge bring us closer to understanding the complex gene regulatory landscape of the mammalian cortex and to designing more efficient genetic tools to target cortical cell types.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.21.609075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.21.609075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

识别大脑中细胞类型特异性增强子对于建立研究哺乳动物大脑的遗传工具至关重要。功能增强子预测的计算方法已在果蝇中提出并得到验证,但尚未在哺乳动物大脑中得到验证。我们组织了 "大脑倡议细胞普查网络(BICCN)挑战赛":我们组织了 "脑计划细胞普查网络(BICCN)挑战赛:从跨物种多图像预测功能性细胞类型特异性增强子",以评估机器学习和基于特征的方法,这些方法旨在为小鼠大脑皮层中的目标细胞类型提名增强子DNA序列。评估方法基于数百个皮层细胞类型特异性增强子的体内验证数据,这些增强子先前被打包到单个 AAV 载体中,并在小鼠腹腔注射。我们发现,开放染色质是预测功能性增强子的关键因素,序列模型提高了对非功能性增强子的预测,这些增强子可以被取消优先权,而不是继续进行体内测试。序列模型还确定了细胞类型特异性转录因子的代码,这些代码可以指导硅增强子的设计。这项社区挑战赛为增强子优先排序算法建立了一个基准,并揭示了对于鉴定哺乳动物皮质细胞类型的功能增强子至关重要的计算方法和分子信息。这项挑战赛的结果使我们更接近于了解哺乳动物大脑复杂的基因调控格局,并帮助我们设计出更有效的遗传工具和潜在的基因疗法来治疗人类神经系统疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Methods for the Prediction of Cell Type-Specific Enhancers in the Mammalian Cortex.

Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the 'Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics' to assess machine learning and feature-based methods designed to nominate enhancer DNA sequences to target cell types in the mouse cortex. Methods were evaluated based on in vivo validation data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of functional enhancers, and sequence models improved prediction of non-functional enhancers that can be deprioritized as opposed to pursued for in vivo testing. Sequence models also identified cell type-specific transcription factor codes that can guide designs of in silico enhancers. This community challenge establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches and molecular information that are crucial for identifying functional enhancers in mammalian cortical cell types. The results of this challenge bring us closer to understanding the complex gene regulatory landscape of the mammalian cortex and to designing more efficient genetic tools to target cortical cell types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信