Fengyan Deng, Pedro Morales-Sosa, Andrea Bernal-Rivera, Yan Wang, Dai Tsuchiya, Jose Emmanuel Javier, Nicolas Rohner, Chongbei Zhao, Jasmin Camacho
{"title":"从冷冻的蝙蝠翅膀活检组织中建立原始稳定的细胞系,用于蝙蝠的细胞、生理和遗传研究。","authors":"Fengyan Deng, Pedro Morales-Sosa, Andrea Bernal-Rivera, Yan Wang, Dai Tsuchiya, Jose Emmanuel Javier, Nicolas Rohner, Chongbei Zhao, Jasmin Camacho","doi":"10.1002/cpz1.1123","DOIUrl":null,"url":null,"abstract":"<p>Bats stand out among mammalian species for their exceptional traits, including the capacity to navigate through flight and echolocation, conserve energy through torpor/hibernation, harbor a multitude of viruses, exhibit resistance to disease, survive harsh environmental conditions, and demonstrate exceptional longevity compared to other mammals of similar size. <i>In vivo</i> studies of bats are challenging for several reasons, such as difficulty in locating and capturing them in their natural environments, limited accessibility, low sample size, environmental variation, long lifespans, slow reproductive rates, zoonotic disease risks, species protection, and ethical concerns. Thus, establishing alternative laboratory models is crucial for investigating the diverse physiological adaptations observed in bats. Obtaining quality cells from tissues is a critical first step for successful primary cell derivation. However, it is often impractical to collect fresh tissue and process the samples immediately for cell culture due to the resources required for isolating and expanding cells. As a result, frozen tissue is typically the starting resource for bat primary cell derivation, but cells in frozen tissue are usually damaged and have low integrity and viability. Isolating primary cells from frozen tissues thus poses a significant challenge. Herein, we present a successfully developed protocol for isolating primary dermal fibroblasts from frozen bat wing biopsies. This protocol marks a significant milestone, as this is the first protocol specifically focused on fibroblast isolation from bat frozen tissue. We also describe methods for primary cell characterization, genetic manipulation of primary cells through lentivirus transduction, and the development of stable cell lines. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Bat wing biopsy collection and preservation</p><p><b>Support Protocol 1</b>: Blood collection from bat venipuncture</p><p><b>Basic Protocol 2</b>: Isolation of primary fibroblasts from adult bat frozen wing biopsy</p><p><b>Support Protocol 2</b>: Primary fibroblast culture and subculture</p><p><b>Support Protocol 3</b>: Determination of growth curve and doubling time</p><p><b>Support Protocol 4</b>: Cell banking and thawing of primary fibroblasts</p><p><b>Basic Protocol 3</b>: Lentiviral transduction of bat primary fibroblasts</p><p><b>Basic Protocol 4</b>: Bat stable fibroblast cell line development</p><p><b>Support Protocol 5</b>: Bat fibroblast validation by immunofluorescence staining</p><p><b>Basic Protocol 5</b>: Chromosome counting</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing Primary and Stable Cell Lines from Frozen Wing Biopsies for Cellular, Physiological, and Genetic Studies in Bats\",\"authors\":\"Fengyan Deng, Pedro Morales-Sosa, Andrea Bernal-Rivera, Yan Wang, Dai Tsuchiya, Jose Emmanuel Javier, Nicolas Rohner, Chongbei Zhao, Jasmin Camacho\",\"doi\":\"10.1002/cpz1.1123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bats stand out among mammalian species for their exceptional traits, including the capacity to navigate through flight and echolocation, conserve energy through torpor/hibernation, harbor a multitude of viruses, exhibit resistance to disease, survive harsh environmental conditions, and demonstrate exceptional longevity compared to other mammals of similar size. <i>In vivo</i> studies of bats are challenging for several reasons, such as difficulty in locating and capturing them in their natural environments, limited accessibility, low sample size, environmental variation, long lifespans, slow reproductive rates, zoonotic disease risks, species protection, and ethical concerns. Thus, establishing alternative laboratory models is crucial for investigating the diverse physiological adaptations observed in bats. Obtaining quality cells from tissues is a critical first step for successful primary cell derivation. However, it is often impractical to collect fresh tissue and process the samples immediately for cell culture due to the resources required for isolating and expanding cells. As a result, frozen tissue is typically the starting resource for bat primary cell derivation, but cells in frozen tissue are usually damaged and have low integrity and viability. Isolating primary cells from frozen tissues thus poses a significant challenge. Herein, we present a successfully developed protocol for isolating primary dermal fibroblasts from frozen bat wing biopsies. This protocol marks a significant milestone, as this is the first protocol specifically focused on fibroblast isolation from bat frozen tissue. We also describe methods for primary cell characterization, genetic manipulation of primary cells through lentivirus transduction, and the development of stable cell lines. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Bat wing biopsy collection and preservation</p><p><b>Support Protocol 1</b>: Blood collection from bat venipuncture</p><p><b>Basic Protocol 2</b>: Isolation of primary fibroblasts from adult bat frozen wing biopsy</p><p><b>Support Protocol 2</b>: Primary fibroblast culture and subculture</p><p><b>Support Protocol 3</b>: Determination of growth curve and doubling time</p><p><b>Support Protocol 4</b>: Cell banking and thawing of primary fibroblasts</p><p><b>Basic Protocol 3</b>: Lentiviral transduction of bat primary fibroblasts</p><p><b>Basic Protocol 4</b>: Bat stable fibroblast cell line development</p><p><b>Support Protocol 5</b>: Bat fibroblast validation by immunofluorescence staining</p><p><b>Basic Protocol 5</b>: Chromosome counting</p>\",\"PeriodicalId\":93970,\"journal\":{\"name\":\"Current protocols\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.1123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.1123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Establishing Primary and Stable Cell Lines from Frozen Wing Biopsies for Cellular, Physiological, and Genetic Studies in Bats
Bats stand out among mammalian species for their exceptional traits, including the capacity to navigate through flight and echolocation, conserve energy through torpor/hibernation, harbor a multitude of viruses, exhibit resistance to disease, survive harsh environmental conditions, and demonstrate exceptional longevity compared to other mammals of similar size. In vivo studies of bats are challenging for several reasons, such as difficulty in locating and capturing them in their natural environments, limited accessibility, low sample size, environmental variation, long lifespans, slow reproductive rates, zoonotic disease risks, species protection, and ethical concerns. Thus, establishing alternative laboratory models is crucial for investigating the diverse physiological adaptations observed in bats. Obtaining quality cells from tissues is a critical first step for successful primary cell derivation. However, it is often impractical to collect fresh tissue and process the samples immediately for cell culture due to the resources required for isolating and expanding cells. As a result, frozen tissue is typically the starting resource for bat primary cell derivation, but cells in frozen tissue are usually damaged and have low integrity and viability. Isolating primary cells from frozen tissues thus poses a significant challenge. Herein, we present a successfully developed protocol for isolating primary dermal fibroblasts from frozen bat wing biopsies. This protocol marks a significant milestone, as this is the first protocol specifically focused on fibroblast isolation from bat frozen tissue. We also describe methods for primary cell characterization, genetic manipulation of primary cells through lentivirus transduction, and the development of stable cell lines. © 2024 Wiley Periodicals LLC.
Basic Protocol 1: Bat wing biopsy collection and preservation
Support Protocol 1: Blood collection from bat venipuncture
Basic Protocol 2: Isolation of primary fibroblasts from adult bat frozen wing biopsy
Support Protocol 2: Primary fibroblast culture and subculture
Support Protocol 3: Determination of growth curve and doubling time
Support Protocol 4: Cell banking and thawing of primary fibroblasts
Basic Protocol 3: Lentiviral transduction of bat primary fibroblasts
Basic Protocol 4: Bat stable fibroblast cell line development
Support Protocol 5: Bat fibroblast validation by immunofluorescence staining
Basic Protocol 5: Chromosome counting