{"title":"结合 QSAR 和 SSD 预测拟除虫菊酯和有机磷农药的水生毒性和物种敏感性。","authors":"H Untersteiner, B Rippey, A Gromley, R Douglas","doi":"10.1080/1062936X.2024.2389818","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread use of pyrethroid and organophosphate pesticides necessitates accurate toxicity predictions for regulatory compliance. In this study QSAR and SSD models for six pyrethroid and four organophosphate compounds using QSAR Toolbox and SSD Toolbox have been developed. The QSAR models, described by the formula 48 h-EC50 or 96 h-LC50 = x + y * log Kow, were validated for predicting 48 h-EC50 values for acute <i>Daphnia</i> toxicity and 96 h-LC50 values for acute fish toxicity, meeting criteria of <i>n</i> ≥10, <i>r</i><sup>2</sup> ≥0.7, and <i>Q</i><sup>2</sup> >0.5. Predicted 48 h-EC50 values for pyrethroids ranged from 3.95 × 10<sup>-5</sup> mg/L (permethrin) to 8.21 × 10<sup>-3</sup> mg/L (fenpropathrin), and 96 h-LC50 values from 3.89 × 10<sup>-5</sup> mg/L (permethrin) to 1.68 × 10<sup>-2</sup> mg/L (metofluthrin). For organophosphates, 48 h-EC50 values ranged from 2.00 × 10<sup>-5</sup> mg/L (carbophenothion) to 3.76 × 10<sup>-2</sup> mg/L (crufomate) and 96 h-LC50 values from 3.81 × 10<sup>-3</sup> mg/L (carbophenothion) to 12.3 mg/L (crufomate). These values show a good agreement with experimental data, though some, like Carbophenothion, overestimated toxicity. HC05 values, indicating hazardous concentrations for 5% of species, range from 0.029 to 0.061 µg/L for pyrethroids and 0.030 to 0.072 µg/L for organophosphates. These values aid in establishing environmental quality standards (EQS). Compared to existing EQS, HC05 values for pyrethroids were less conservative, while those for organophosphates were comparable.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"35 7","pages":"611-640"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining QSAR and SSD to predict aquatic toxicity and species sensitivity of pyrethroid and organophosphate pesticides.\",\"authors\":\"H Untersteiner, B Rippey, A Gromley, R Douglas\",\"doi\":\"10.1080/1062936X.2024.2389818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread use of pyrethroid and organophosphate pesticides necessitates accurate toxicity predictions for regulatory compliance. In this study QSAR and SSD models for six pyrethroid and four organophosphate compounds using QSAR Toolbox and SSD Toolbox have been developed. The QSAR models, described by the formula 48 h-EC50 or 96 h-LC50 = x + y * log Kow, were validated for predicting 48 h-EC50 values for acute <i>Daphnia</i> toxicity and 96 h-LC50 values for acute fish toxicity, meeting criteria of <i>n</i> ≥10, <i>r</i><sup>2</sup> ≥0.7, and <i>Q</i><sup>2</sup> >0.5. Predicted 48 h-EC50 values for pyrethroids ranged from 3.95 × 10<sup>-5</sup> mg/L (permethrin) to 8.21 × 10<sup>-3</sup> mg/L (fenpropathrin), and 96 h-LC50 values from 3.89 × 10<sup>-5</sup> mg/L (permethrin) to 1.68 × 10<sup>-2</sup> mg/L (metofluthrin). For organophosphates, 48 h-EC50 values ranged from 2.00 × 10<sup>-5</sup> mg/L (carbophenothion) to 3.76 × 10<sup>-2</sup> mg/L (crufomate) and 96 h-LC50 values from 3.81 × 10<sup>-3</sup> mg/L (carbophenothion) to 12.3 mg/L (crufomate). These values show a good agreement with experimental data, though some, like Carbophenothion, overestimated toxicity. HC05 values, indicating hazardous concentrations for 5% of species, range from 0.029 to 0.061 µg/L for pyrethroids and 0.030 to 0.072 µg/L for organophosphates. These values aid in establishing environmental quality standards (EQS). Compared to existing EQS, HC05 values for pyrethroids were less conservative, while those for organophosphates were comparable.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\"35 7\",\"pages\":\"611-640\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2389818\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2389818","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Combining QSAR and SSD to predict aquatic toxicity and species sensitivity of pyrethroid and organophosphate pesticides.
The widespread use of pyrethroid and organophosphate pesticides necessitates accurate toxicity predictions for regulatory compliance. In this study QSAR and SSD models for six pyrethroid and four organophosphate compounds using QSAR Toolbox and SSD Toolbox have been developed. The QSAR models, described by the formula 48 h-EC50 or 96 h-LC50 = x + y * log Kow, were validated for predicting 48 h-EC50 values for acute Daphnia toxicity and 96 h-LC50 values for acute fish toxicity, meeting criteria of n ≥10, r2 ≥0.7, and Q2 >0.5. Predicted 48 h-EC50 values for pyrethroids ranged from 3.95 × 10-5 mg/L (permethrin) to 8.21 × 10-3 mg/L (fenpropathrin), and 96 h-LC50 values from 3.89 × 10-5 mg/L (permethrin) to 1.68 × 10-2 mg/L (metofluthrin). For organophosphates, 48 h-EC50 values ranged from 2.00 × 10-5 mg/L (carbophenothion) to 3.76 × 10-2 mg/L (crufomate) and 96 h-LC50 values from 3.81 × 10-3 mg/L (carbophenothion) to 12.3 mg/L (crufomate). These values show a good agreement with experimental data, though some, like Carbophenothion, overestimated toxicity. HC05 values, indicating hazardous concentrations for 5% of species, range from 0.029 to 0.061 µg/L for pyrethroids and 0.030 to 0.072 µg/L for organophosphates. These values aid in establishing environmental quality standards (EQS). Compared to existing EQS, HC05 values for pyrethroids were less conservative, while those for organophosphates were comparable.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.