Aleksei I Gudimenko, Alyona D Zakharenko, Pavel S Petrov
{"title":"Comment on:\"J. Acoust. Soc. Am. 155, 1285-1296 (2024)] (L).","authors":"Aleksei I Gudimenko, Alyona D Zakharenko, Pavel S Petrov","doi":"10.1121/10.0028366","DOIUrl":null,"url":null,"abstract":"<p><p>Buckingham [(2024). J. Acoust. Soc. Am. 155, 1285-1296] analyzed the dependence of the reflection coefficient on the grazing angle in two-layer marine sediment model. The upper layer in his model consists of a fine-grained material (mud), while seawater and the basement below the mud layer are treated as homogeneous halfspaces. Buckingham's analyses revealed several narrow spikes in this dependence that appeared only in the presence of a sound velocity gradient in the mud layer, a phenomenon he called acoustic glint. His derivation was accomplished for certain specific dependencies of the sound velocity on the depth. Surprisingly, the authors appear to reach the conclusion that for a slightly different vertical sound speed profile in the mud layer the spikes are no longer present in the dependence of the reflection coefficient on the grazing angle. More precisely, the same problem is examined in this letter for the case of an n2-linear layer (often called Airy medium). Acoustic glint effect is therefore very sensitive to the exact parametrization of the mud layer.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on: \\\"Anomalous reflection from a two-layered marine sediment\\\" [J. Acoust. Soc. Am. 155, 1285-1296 (2024)] (L).\",\"authors\":\"Aleksei I Gudimenko, Alyona D Zakharenko, Pavel S Petrov\",\"doi\":\"10.1121/10.0028366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Buckingham [(2024). J. Acoust. Soc. Am. 155, 1285-1296] analyzed the dependence of the reflection coefficient on the grazing angle in two-layer marine sediment model. The upper layer in his model consists of a fine-grained material (mud), while seawater and the basement below the mud layer are treated as homogeneous halfspaces. Buckingham's analyses revealed several narrow spikes in this dependence that appeared only in the presence of a sound velocity gradient in the mud layer, a phenomenon he called acoustic glint. His derivation was accomplished for certain specific dependencies of the sound velocity on the depth. Surprisingly, the authors appear to reach the conclusion that for a slightly different vertical sound speed profile in the mud layer the spikes are no longer present in the dependence of the reflection coefficient on the grazing angle. More precisely, the same problem is examined in this letter for the case of an n2-linear layer (often called Airy medium). Acoustic glint effect is therefore very sensitive to the exact parametrization of the mud layer.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0028366\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0028366","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Comment on: "Anomalous reflection from a two-layered marine sediment" [J. Acoust. Soc. Am. 155, 1285-1296 (2024)] (L).
Buckingham [(2024). J. Acoust. Soc. Am. 155, 1285-1296] analyzed the dependence of the reflection coefficient on the grazing angle in two-layer marine sediment model. The upper layer in his model consists of a fine-grained material (mud), while seawater and the basement below the mud layer are treated as homogeneous halfspaces. Buckingham's analyses revealed several narrow spikes in this dependence that appeared only in the presence of a sound velocity gradient in the mud layer, a phenomenon he called acoustic glint. His derivation was accomplished for certain specific dependencies of the sound velocity on the depth. Surprisingly, the authors appear to reach the conclusion that for a slightly different vertical sound speed profile in the mud layer the spikes are no longer present in the dependence of the reflection coefficient on the grazing angle. More precisely, the same problem is examined in this letter for the case of an n2-linear layer (often called Airy medium). Acoustic glint effect is therefore very sensitive to the exact parametrization of the mud layer.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.