Gabriella Pinto, Monica Gelzo, Gustavo Cernera, Mariapia Esposito, Anna Illiano, Stefania Serpico, Biagio Pinchera, Ivan Gentile, Giuseppe Castaldo, Angela Amoresano
{"title":"通过基于 omics 的方法对受 SARS-CoV-2 感染的患者唾液进行分子指纹分析。","authors":"Gabriella Pinto, Monica Gelzo, Gustavo Cernera, Mariapia Esposito, Anna Illiano, Stefania Serpico, Biagio Pinchera, Ivan Gentile, Giuseppe Castaldo, Angela Amoresano","doi":"10.1002/jms.5082","DOIUrl":null,"url":null,"abstract":"<p>Clinical expression of coronavirus disease 2019 (COVID-19) infectionis widely variable including fatal cases and patients with mild symptoms and a rapid resolution. We studied saliva from 63 hospitalized COVID-19 patients and from 30 healthy controls by integrating large-scale proteomics, peptidomics and targeted metabolomics to assess the biochemical alterations following the infection and to obtain a set of putative biomarkers useful for noninvasive diagnosis. We used an untargeted approach by using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for proteomics and peptidomics analysis and targeted LC–multiple reaction monitoring/MS for the analysis of amino acids. The levels of 77 proteins were significantly different in COVID-19 patients. Among these, seven proteins were found only in saliva from patients with COVID-19, four were up-regulated and three were down-regulated at least five-folds in saliva from COVID-19 patients in comparison to controls. The analysis of proteins revealed a complex balance between pro-inflammatory and anti-inflammatory proteins and a reduced amount of several proteins with immune activity that possibly favours the spreading of the virus. Such reduction could be related to the enhanced activity of endopeptidases induced by the infection that in turn caused an altered balance of free peptides. In fact, on a total of 28 peptides, 22 (80%) were differently expressed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and control subjects. The multivariate analysis of such peptides permits to obtain a diagnostic algorithm that discriminate the two populations with a high diagnostic efficiency. Among amino acids, only threonine resulted significantly different between COVID-19 patients and controls, while alanine levels were significantly different between COVID-19 patients with different severity. In conclusion, the present study defined a set of molecules to be detected with a quick and easy method based on mass spectrometry tandem useful to reveal biochemical alterations involved in the pathogenesis of such a complex disease. Data are available via ProteomeXchange with identifier PXD045612.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5082","citationCount":"0","resultStr":"{\"title\":\"Molecular fingerprint by omics-based approaches in saliva from patients affected by SARS-CoV-2 infection\",\"authors\":\"Gabriella Pinto, Monica Gelzo, Gustavo Cernera, Mariapia Esposito, Anna Illiano, Stefania Serpico, Biagio Pinchera, Ivan Gentile, Giuseppe Castaldo, Angela Amoresano\",\"doi\":\"10.1002/jms.5082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clinical expression of coronavirus disease 2019 (COVID-19) infectionis widely variable including fatal cases and patients with mild symptoms and a rapid resolution. We studied saliva from 63 hospitalized COVID-19 patients and from 30 healthy controls by integrating large-scale proteomics, peptidomics and targeted metabolomics to assess the biochemical alterations following the infection and to obtain a set of putative biomarkers useful for noninvasive diagnosis. We used an untargeted approach by using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for proteomics and peptidomics analysis and targeted LC–multiple reaction monitoring/MS for the analysis of amino acids. The levels of 77 proteins were significantly different in COVID-19 patients. Among these, seven proteins were found only in saliva from patients with COVID-19, four were up-regulated and three were down-regulated at least five-folds in saliva from COVID-19 patients in comparison to controls. The analysis of proteins revealed a complex balance between pro-inflammatory and anti-inflammatory proteins and a reduced amount of several proteins with immune activity that possibly favours the spreading of the virus. Such reduction could be related to the enhanced activity of endopeptidases induced by the infection that in turn caused an altered balance of free peptides. In fact, on a total of 28 peptides, 22 (80%) were differently expressed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and control subjects. The multivariate analysis of such peptides permits to obtain a diagnostic algorithm that discriminate the two populations with a high diagnostic efficiency. Among amino acids, only threonine resulted significantly different between COVID-19 patients and controls, while alanine levels were significantly different between COVID-19 patients with different severity. In conclusion, the present study defined a set of molecules to be detected with a quick and easy method based on mass spectrometry tandem useful to reveal biochemical alterations involved in the pathogenesis of such a complex disease. Data are available via ProteomeXchange with identifier PXD045612.</p>\",\"PeriodicalId\":16178,\"journal\":{\"name\":\"Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5082\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jms.5082\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5082","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Molecular fingerprint by omics-based approaches in saliva from patients affected by SARS-CoV-2 infection
Clinical expression of coronavirus disease 2019 (COVID-19) infectionis widely variable including fatal cases and patients with mild symptoms and a rapid resolution. We studied saliva from 63 hospitalized COVID-19 patients and from 30 healthy controls by integrating large-scale proteomics, peptidomics and targeted metabolomics to assess the biochemical alterations following the infection and to obtain a set of putative biomarkers useful for noninvasive diagnosis. We used an untargeted approach by using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for proteomics and peptidomics analysis and targeted LC–multiple reaction monitoring/MS for the analysis of amino acids. The levels of 77 proteins were significantly different in COVID-19 patients. Among these, seven proteins were found only in saliva from patients with COVID-19, four were up-regulated and three were down-regulated at least five-folds in saliva from COVID-19 patients in comparison to controls. The analysis of proteins revealed a complex balance between pro-inflammatory and anti-inflammatory proteins and a reduced amount of several proteins with immune activity that possibly favours the spreading of the virus. Such reduction could be related to the enhanced activity of endopeptidases induced by the infection that in turn caused an altered balance of free peptides. In fact, on a total of 28 peptides, 22 (80%) were differently expressed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and control subjects. The multivariate analysis of such peptides permits to obtain a diagnostic algorithm that discriminate the two populations with a high diagnostic efficiency. Among amino acids, only threonine resulted significantly different between COVID-19 patients and controls, while alanine levels were significantly different between COVID-19 patients with different severity. In conclusion, the present study defined a set of molecules to be detected with a quick and easy method based on mass spectrometry tandem useful to reveal biochemical alterations involved in the pathogenesis of such a complex disease. Data are available via ProteomeXchange with identifier PXD045612.
期刊介绍:
The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions.
The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.