{"title":"用于癌症基因治疗的 NF-κB 激活癌基因抑制策略。","authors":"Wei Dai, Jian Wu, Yingchun Shui, Qiuyue Wu, Jinke Wang, Xinyi Xia","doi":"10.1038/s41417-024-00828-x","DOIUrl":null,"url":null,"abstract":"NF-κB is a promising target for cancer treatment because of its overactivation in almost all cancers but countless NF-κB inhibitors rarely became clinical drugs due to side effects. In contrast to traditional cancer treatments aimed at inhibiting NF-κB activity, this study develop a novel approach termed HOPE, which focuses on activating the exogenous effector gene CRISPR-Cas13a within cancer cells, achieved by utilizing the NF-κB-specific promoter DMP previously constructed, then targets and suppresses the expression of oncogenes TERT, PLK1, KRAS and MYC at mRNA level. We evaluated the antitumour effects of HOPE in various cultured cells and confirmed it could induce obvious the death of cancer cells without affecting normal cells. By packaging HOPE into adeno-associated virus (AAV) and intravenously injected it to treat mice that were subcutaneously transplanted with colorectal cancer. This validated that rAAV-HOPE could significantly inhibit tumour growth without side effects. Based on the scRNA-seq data, we observed that HOPE could activate the immune system and decrease the proportion of cancer cells, particularly reducing the stemness of cancer cells. This study elucidates an important role of HOPE in inhibiting cancer cell growth both in vitro and in vivo, additionally provides a novel therapeutic technology for cancer gene therapy.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 11","pages":"1632-1645"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00828-x.pdf","citationCount":"0","resultStr":"{\"title\":\"NF-κB-activated oncogene inhibition strategy for cancer gene therapy\",\"authors\":\"Wei Dai, Jian Wu, Yingchun Shui, Qiuyue Wu, Jinke Wang, Xinyi Xia\",\"doi\":\"10.1038/s41417-024-00828-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NF-κB is a promising target for cancer treatment because of its overactivation in almost all cancers but countless NF-κB inhibitors rarely became clinical drugs due to side effects. In contrast to traditional cancer treatments aimed at inhibiting NF-κB activity, this study develop a novel approach termed HOPE, which focuses on activating the exogenous effector gene CRISPR-Cas13a within cancer cells, achieved by utilizing the NF-κB-specific promoter DMP previously constructed, then targets and suppresses the expression of oncogenes TERT, PLK1, KRAS and MYC at mRNA level. We evaluated the antitumour effects of HOPE in various cultured cells and confirmed it could induce obvious the death of cancer cells without affecting normal cells. By packaging HOPE into adeno-associated virus (AAV) and intravenously injected it to treat mice that were subcutaneously transplanted with colorectal cancer. This validated that rAAV-HOPE could significantly inhibit tumour growth without side effects. Based on the scRNA-seq data, we observed that HOPE could activate the immune system and decrease the proportion of cancer cells, particularly reducing the stemness of cancer cells. This study elucidates an important role of HOPE in inhibiting cancer cell growth both in vitro and in vivo, additionally provides a novel therapeutic technology for cancer gene therapy.\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\"31 11\",\"pages\":\"1632-1645\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41417-024-00828-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41417-024-00828-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-024-00828-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
NF-κB-activated oncogene inhibition strategy for cancer gene therapy
NF-κB is a promising target for cancer treatment because of its overactivation in almost all cancers but countless NF-κB inhibitors rarely became clinical drugs due to side effects. In contrast to traditional cancer treatments aimed at inhibiting NF-κB activity, this study develop a novel approach termed HOPE, which focuses on activating the exogenous effector gene CRISPR-Cas13a within cancer cells, achieved by utilizing the NF-κB-specific promoter DMP previously constructed, then targets and suppresses the expression of oncogenes TERT, PLK1, KRAS and MYC at mRNA level. We evaluated the antitumour effects of HOPE in various cultured cells and confirmed it could induce obvious the death of cancer cells without affecting normal cells. By packaging HOPE into adeno-associated virus (AAV) and intravenously injected it to treat mice that were subcutaneously transplanted with colorectal cancer. This validated that rAAV-HOPE could significantly inhibit tumour growth without side effects. Based on the scRNA-seq data, we observed that HOPE could activate the immune system and decrease the proportion of cancer cells, particularly reducing the stemness of cancer cells. This study elucidates an important role of HOPE in inhibiting cancer cell growth both in vitro and in vivo, additionally provides a novel therapeutic technology for cancer gene therapy.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.