琥珀酸能激活 UCP2,从而抑制神经炎症并在脑出血后提供保护。

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yecheng Wang, Caiyun Huang, Xiaoying Wang, Rong Cheng, Xue Li, Jiahao Wang, Lu Zhang, Fuhao Li, Hao Wang, Xinyu Li, Yi Li, Yiqing Xia, Jian Cheng, Xiaofan Pan, Jia Jia, Guo-Dong Xiao
{"title":"琥珀酸能激活 UCP2,从而抑制神经炎症并在脑出血后提供保护。","authors":"Yecheng Wang, Caiyun Huang, Xiaoying Wang, Rong Cheng, Xue Li, Jiahao Wang, Lu Zhang, Fuhao Li, Hao Wang, Xinyu Li, Yi Li, Yiqing Xia, Jian Cheng, Xiaofan Pan, Jia Jia, Guo-Dong Xiao","doi":"10.1089/ars.2024.0573","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. <b><i>Results:</i></b> We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. <b><i>Innovation and Conclusion:</i></b> We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Succinate Activates Uncoupling Protein 2 to Suppress Neuroinflammation and Confer Protection Following Intracerebral Hemorrhage.\",\"authors\":\"Yecheng Wang, Caiyun Huang, Xiaoying Wang, Rong Cheng, Xue Li, Jiahao Wang, Lu Zhang, Fuhao Li, Hao Wang, Xinyu Li, Yi Li, Yiqing Xia, Jian Cheng, Xiaofan Pan, Jia Jia, Guo-Dong Xiao\",\"doi\":\"10.1089/ars.2024.0573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. <b><i>Results:</i></b> We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. <b><i>Innovation and Conclusion:</i></b> We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2024.0573\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0573","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:琥珀酸是三羧酸循环中的一种代谢产物,它作为细胞内或细胞外的信号分子在炎症中发挥着重要作用,这一点已被越来越多的人所认识。然而,琥珀酸盐在炎症中的作用和机制仍然难以捉摸。在此,我们研究了琥珀酸盐对脑出血(ICH)模型中神经炎症的影响机制:结果:我们意外地发现,琥珀酸盐能强有力地抑制神经炎症并在 ICH 后提供保护。从机理上讲,琥珀酸脱氢酶(SDH)对琥珀酸的氧化作用推动了线粒体复合体 I 的反向电子传递(RET),导致小胶质细胞线粒体产生超氧化物。复合体 I 产生的超氧化物反过来又激活了解偶联蛋白 2(UCP2)。通过使用在小胶质细胞/巨噬细胞中特异性删除 UCP2 的小鼠,我们发现 UCP2 是琥珀酸抑制神经炎症、提供保护和激活 ICH 后下游 AMP 激活蛋白激酶(AMPK)所必需的。此外,SDH、复合物I或AMPK的敲除会取消琥珀酸在ICH后的治疗效果:我们提供的证据表明,驱动复合体I RET激活UCP2是琥珀酸酯细胞内信号传导的一种新机制,也是琥珀酸酯抑制神经炎症的一种机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Succinate Activates Uncoupling Protein 2 to Suppress Neuroinflammation and Confer Protection Following Intracerebral Hemorrhage.

Aims: Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. Results: We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. Innovation and Conclusion: We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信