{"title":"利用 RNA 表面拓扑预测 RNA 结构中的小分子结合核苷酸","authors":"Jiaming Gao, Haoquan Liu, Chen Zhuo, Chengwei Zeng, Yunjie Zhao","doi":"10.1021/acs.jcim.4c01264","DOIUrl":null,"url":null,"abstract":"<p><p>RNA small molecule interactions play a crucial role in drug discovery and inhibitor design. Identifying RNA small molecule binding nucleotides is essential and requires methods that exhibit a high predictive ability to facilitate drug discovery and inhibitor design. Existing methods can predict the binding nucleotides of simple RNA structures, but it is hard to predict binding nucleotides in complex RNA structures with junctions. To address this limitation, we developed a new deep learning model based on spatial correlation, ZHmolReSTasite, which can accurately predict binding nucleotides of small and large RNA with junctions. We utilize RNA surface topography to consider the spatial correlation, characterizing nucleotides from sequence and tertiary structures to learn a high-level representation. Our method outperforms existing methods for benchmark test sets composed of simple RNA structures, achieving precision values of 72.9% on TE18 and 76.7% on RB9 test sets. For a challenging test set composed of RNA structures with junctions, our method outperforms the second best method by 11.6% in precision. Moreover, ZHmolReSTasite demonstrates robustness regarding the predicted RNA structures. In summary, ZHmolReSTasite successfully incorporates spatial correlation, outperforms previous methods on small and large RNA structures using RNA surface topography, and can provide valuable insights into RNA small molecule prediction and accelerate RNA inhibitor design.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"6979-6992"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Small Molecule Binding Nucleotides in RNA Structures Using RNA Surface Topography.\",\"authors\":\"Jiaming Gao, Haoquan Liu, Chen Zhuo, Chengwei Zeng, Yunjie Zhao\",\"doi\":\"10.1021/acs.jcim.4c01264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA small molecule interactions play a crucial role in drug discovery and inhibitor design. Identifying RNA small molecule binding nucleotides is essential and requires methods that exhibit a high predictive ability to facilitate drug discovery and inhibitor design. Existing methods can predict the binding nucleotides of simple RNA structures, but it is hard to predict binding nucleotides in complex RNA structures with junctions. To address this limitation, we developed a new deep learning model based on spatial correlation, ZHmolReSTasite, which can accurately predict binding nucleotides of small and large RNA with junctions. We utilize RNA surface topography to consider the spatial correlation, characterizing nucleotides from sequence and tertiary structures to learn a high-level representation. Our method outperforms existing methods for benchmark test sets composed of simple RNA structures, achieving precision values of 72.9% on TE18 and 76.7% on RB9 test sets. For a challenging test set composed of RNA structures with junctions, our method outperforms the second best method by 11.6% in precision. Moreover, ZHmolReSTasite demonstrates robustness regarding the predicted RNA structures. In summary, ZHmolReSTasite successfully incorporates spatial correlation, outperforms previous methods on small and large RNA structures using RNA surface topography, and can provide valuable insights into RNA small molecule prediction and accelerate RNA inhibitor design.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"6979-6992\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01264\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01264","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Predicting Small Molecule Binding Nucleotides in RNA Structures Using RNA Surface Topography.
RNA small molecule interactions play a crucial role in drug discovery and inhibitor design. Identifying RNA small molecule binding nucleotides is essential and requires methods that exhibit a high predictive ability to facilitate drug discovery and inhibitor design. Existing methods can predict the binding nucleotides of simple RNA structures, but it is hard to predict binding nucleotides in complex RNA structures with junctions. To address this limitation, we developed a new deep learning model based on spatial correlation, ZHmolReSTasite, which can accurately predict binding nucleotides of small and large RNA with junctions. We utilize RNA surface topography to consider the spatial correlation, characterizing nucleotides from sequence and tertiary structures to learn a high-level representation. Our method outperforms existing methods for benchmark test sets composed of simple RNA structures, achieving precision values of 72.9% on TE18 and 76.7% on RB9 test sets. For a challenging test set composed of RNA structures with junctions, our method outperforms the second best method by 11.6% in precision. Moreover, ZHmolReSTasite demonstrates robustness regarding the predicted RNA structures. In summary, ZHmolReSTasite successfully incorporates spatial correlation, outperforms previous methods on small and large RNA structures using RNA surface topography, and can provide valuable insights into RNA small molecule prediction and accelerate RNA inhibitor design.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.