{"title":"最少的丰富包装和分离的可选择性","authors":"Zoltán Füredi, Alexandr Kostochka, Mohit Kumbhat","doi":"10.1007/s10623-024-01484-w","DOIUrl":null,"url":null,"abstract":"<p>A (<i>v</i>, <i>k</i>, <i>t</i>) packing of size <i>b</i> is a system of <i>b</i> subsets (blocks) of a <i>v</i>-element underlying set such that each block has <i>k</i> elements and every <i>t</i>-set is contained in at most one block. <i>P</i>(<i>v</i>, <i>k</i>, <i>t</i>) stands for the maximum possible <i>b</i>. A packing is called <i>abundant</i> if <span>\\(b> v\\)</span>. We give new estimates for <i>P</i>(<i>v</i>, <i>k</i>, <i>t</i>) around the critical range, slightly improving the Johnson bound and asymptotically determine the minimum <span>\\(v=v_0(k,t)\\)</span> when <i>abundant</i> packings exist. For a graph <i>G</i> and a positive integer <i>c</i>, let <span>\\(\\chi _\\ell (G,c)\\)</span> be the minimum value of <i>k</i> such that one can properly color the vertices of <i>G</i> from any assignment of lists <i>L</i>(<i>v</i>) such that <span>\\(|L(v)|=k\\)</span> for all <span>\\(v\\in V(G)\\)</span> and <span>\\(|L(u)\\cap L(v)|\\le c\\)</span> for all <span>\\(uv\\in E(G)\\)</span>. Kratochvíl, Tuza and Voigt in 1998 asked to determine <span>\\(\\lim _{n\\rightarrow \\infty } \\chi _\\ell (K_n,c)/\\sqrt{cn}\\)</span> (if it exists). Using our bound on <span>\\(v_0(k,t)\\)</span>, we prove that the limit exists and equals 1. Given <i>c</i>, we find the exact value of <span>\\(\\chi _\\ell (K_n,c)\\)</span> for infinitely many <i>n</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal abundant packings and choosability with separation\",\"authors\":\"Zoltán Füredi, Alexandr Kostochka, Mohit Kumbhat\",\"doi\":\"10.1007/s10623-024-01484-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A (<i>v</i>, <i>k</i>, <i>t</i>) packing of size <i>b</i> is a system of <i>b</i> subsets (blocks) of a <i>v</i>-element underlying set such that each block has <i>k</i> elements and every <i>t</i>-set is contained in at most one block. <i>P</i>(<i>v</i>, <i>k</i>, <i>t</i>) stands for the maximum possible <i>b</i>. A packing is called <i>abundant</i> if <span>\\\\(b> v\\\\)</span>. We give new estimates for <i>P</i>(<i>v</i>, <i>k</i>, <i>t</i>) around the critical range, slightly improving the Johnson bound and asymptotically determine the minimum <span>\\\\(v=v_0(k,t)\\\\)</span> when <i>abundant</i> packings exist. For a graph <i>G</i> and a positive integer <i>c</i>, let <span>\\\\(\\\\chi _\\\\ell (G,c)\\\\)</span> be the minimum value of <i>k</i> such that one can properly color the vertices of <i>G</i> from any assignment of lists <i>L</i>(<i>v</i>) such that <span>\\\\(|L(v)|=k\\\\)</span> for all <span>\\\\(v\\\\in V(G)\\\\)</span> and <span>\\\\(|L(u)\\\\cap L(v)|\\\\le c\\\\)</span> for all <span>\\\\(uv\\\\in E(G)\\\\)</span>. Kratochvíl, Tuza and Voigt in 1998 asked to determine <span>\\\\(\\\\lim _{n\\\\rightarrow \\\\infty } \\\\chi _\\\\ell (K_n,c)/\\\\sqrt{cn}\\\\)</span> (if it exists). Using our bound on <span>\\\\(v_0(k,t)\\\\)</span>, we prove that the limit exists and equals 1. Given <i>c</i>, we find the exact value of <span>\\\\(\\\\chi _\\\\ell (K_n,c)\\\\)</span> for infinitely many <i>n</i>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01484-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01484-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
大小为 b 的(v,k,t)集合是由 v 元素底层集合的 b 个子集(块)组成的系统,每个块有 k 个元素,且每个 t 集最多包含在一个块中。P(v,k,t)代表最大可能的 b。如果 \(b>v\),则称一个包装为丰富包装。我们给出了临界范围附近 P(v,k,t)的新估计值,略微改进了约翰逊界值,并渐进地确定了丰度包装存在时的最小值 \(v=v_0(k,t)\)。对于一个图 G 和一个正整数 c,让 \(\chi _\ell (G,c)\) 是 k 的最小值,这样人们就可以从列表 L(v) 的任何赋值中给 G 的顶点正确着色,从而对于所有 \(v\in V(G)\) 都可以\(|L(v)|=k\),对于所有 \(uv\in E(G)\) 都可以\(|L(u)\cap L(v)|\le c\) 。Kratochvíl、Tuza 和 Voigt 在 1998 年要求确定 \(\lim _{n\rightarrow \infty }.\(K_n,c)/sqrt{cn}\) (如果存在的话)。利用我们对 \(v_0(k,t)\)的约束,我们可以证明这个极限存在并且等于 1。给定 c,我们可以找到无限多 n 时 \(\chi _\ell (K_n,c)\) 的精确值。
Minimal abundant packings and choosability with separation
A (v, k, t) packing of size b is a system of b subsets (blocks) of a v-element underlying set such that each block has k elements and every t-set is contained in at most one block. P(v, k, t) stands for the maximum possible b. A packing is called abundant if \(b> v\). We give new estimates for P(v, k, t) around the critical range, slightly improving the Johnson bound and asymptotically determine the minimum \(v=v_0(k,t)\) when abundant packings exist. For a graph G and a positive integer c, let \(\chi _\ell (G,c)\) be the minimum value of k such that one can properly color the vertices of G from any assignment of lists L(v) such that \(|L(v)|=k\) for all \(v\in V(G)\) and \(|L(u)\cap L(v)|\le c\) for all \(uv\in E(G)\). Kratochvíl, Tuza and Voigt in 1998 asked to determine \(\lim _{n\rightarrow \infty } \chi _\ell (K_n,c)/\sqrt{cn}\) (if it exists). Using our bound on \(v_0(k,t)\), we prove that the limit exists and equals 1. Given c, we find the exact value of \(\chi _\ell (K_n,c)\) for infinitely many n.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.