过渡金属衍生的二维层状包光体:光伏系统中有望替代铅的材料

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Tanmoy Kalita, Pallab Das, Dhruba Jyoti Kalita
{"title":"过渡金属衍生的二维层状包光体:光伏系统中有望替代铅的材料","authors":"Tanmoy Kalita, Pallab Das, Dhruba Jyoti Kalita","doi":"10.1002/adts.202400391","DOIUrl":null,"url":null,"abstract":"The high sensitivity of 3D perovskites toward air and moisture hampers their commercialization due to material decomposition. Introducing their 2D counterparts may provide a remedy to these stability issues, as hydrophobic bulky organic cations can resist direct contact of [<span data-altimg=\"/cms/asset/ecb315cc-a2a1-4ad1-9bac-3a6c9dee91dd/adts202400391-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400391-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,3,8\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"sequence\" data-semantic-speech=\"upper M upper X 6 right bracket Superscript 4 minus\" data-semantic-type=\"punctuated\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mrow style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"closefence\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-msup data-semantic-children=\"4,7\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mjx-mrow data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"6\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"subtraction\" data-semantic-type=\"postfixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"postfixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0001\" display=\"inline\" location=\"graphic/adts202400391-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,3,8\" data-semantic-content=\"3\" data-semantic-role=\"sequence\" data-semantic-speech=\"upper M upper X 6 right bracket Superscript 4 minus\" data-semantic-type=\"punctuated\"><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">MX</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">6</mn></msub><mrow><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"closefence\" data-semantic-type=\"punctuation\" stretchy=\"false\">]</mo></mrow><msup data-semantic-=\"\" data-semantic-children=\"4,7\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mrow data-semantic-=\"\" data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mrow><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"6\" data-semantic-parent=\"8\" data-semantic-role=\"subtraction\" data-semantic-type=\"postfixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn><mo data-semantic-=\"\" data-semantic-operator=\"postfixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo></mrow></msup></mrow>${\\rm MX}_6]{}^{4-}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> sheets with moisture in the air. In addition to air and water stability, 2D perovskites offer tunable optoelectronic properties through structural modulation, similar to their 3D counterparts. In this study, six different transition metal (TM)-based 2D hybrid halide perovskites are designed: <span data-altimg=\"/cms/asset/4b06f5ea-34d0-49de-a825-721b0041ad0c/adts202400391-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400391-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper C l 4\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.285em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.16em;\"></mjx-mspace><mjx-msub data-semantic-children=\"7,8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0002\" display=\"inline\" location=\"graphic/adts202400391-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper C l 4\" data-semantic-type=\"infixop\"><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">TTMA</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.16em\"></mspace><msub data-semantic-=\"\" data-semantic-children=\"7,8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">PdCl</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></msub></mrow>${\\rm (TTMA)}_2\\,{\\rm PdCl}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\"/cms/asset/c22f4d3f-9cba-4133-83a9-ecf0a6db72e9/adts202400391-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400391-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper B r 4\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.285em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.16em;\"></mjx-mspace><mjx-msub data-semantic-children=\"7,8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0003\" display=\"inline\" location=\"graphic/adts202400391-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper B r 4\" data-semantic-type=\"infixop\"><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">TTMA</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.16em\"></mspace><msub data-semantic-=\"\" data-semantic-children=\"7,8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">PdBr</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></msub></mrow>${\\rm (TTMA)}_2\\,{\\rm PdBr}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\"/cms/asset/a6844919-6b4d-4efc-b3bc-563f9c2717f4/adts202400391-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400391-math-0004.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper I 4\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.285em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.16em;\"></mjx-mspace><mjx-msub data-semantic-children=\"7,8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0004\" display=\"inline\" location=\"graphic/adts202400391-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper I 4\" data-semantic-type=\"infixop\"><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">TTMA</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.16em\"></mspace><msub data-semantic-=\"\" data-semantic-children=\"7,8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">PdI</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></msub></mrow>${\\rm (TTMA)}_2\\,{\\rm PdI}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\"/cms/asset/86687e52-cbb8-4ee6-9feb-37b76dde6c6b/adts202400391-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400391-math-0005.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper C l 4\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.285em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.16em;\"></mjx-mspace><mjx-msub data-semantic-children=\"7,8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0005\" display=\"inline\" location=\"graphic/adts202400391-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper C l 4\" data-semantic-type=\"infixop\"><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">TTMA</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.16em\"></mspace><msub data-semantic-=\"\" data-semantic-children=\"7,8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">PtCl</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></msub></mrow>${\\rm (TTMA)}_2\\,{\\rm PtCl}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\"/cms/asset/a40490c2-287d-435d-b175-6f443b7352da/adts202400391-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400391-math-0006.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper B r 4\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.285em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.16em;\"></mjx-mspace><mjx-msub data-semantic-children=\"7,8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0006\" display=\"inline\" location=\"graphic/adts202400391-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper B r 4\" data-semantic-type=\"infixop\"><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">TTMA</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.16em\"></mspace><msub data-semantic-=\"\" data-semantic-children=\"7,8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">PtBr</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></msub></mrow>${\\rm (TTMA)}_2\\,{\\rm PtBr}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, and <span data-altimg=\"/cms/asset/995e0869-1574-498b-8038-0e60185f123e/adts202400391-math-0007.png\"></span><mjx-container ctxtmenu_counter=\"14\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400391-math-0007.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper I 4\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.285em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.16em;\"></mjx-mspace><mjx-msub data-semantic-children=\"7,8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0007\" display=\"inline\" location=\"graphic/adts202400391-math-0007.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper I 4\" data-semantic-type=\"infixop\"><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">TTMA</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.16em\"></mspace><msub data-semantic-=\"\" data-semantic-children=\"7,8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">PtI</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></msub></mrow>${\\rm (TTMA)}_2\\,{\\rm PtI}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container> as alternatives for Pb-based perovskites. Analysis of structural and thermodynamic parameters demonstrate that these designed perovskite materials can form structurally and thermodynamically stable compounds. Additionally, optical properties analysis reveals that the intended compounds exhibit absorption maxima in the visible range of the electromagnetic spectrum. Among the designed compounds, <span data-altimg=\"/cms/asset/0daaead7-afc7-4d7a-a6d7-1a0e990f87be/adts202400391-math-0008.png\"></span><mjx-container ctxtmenu_counter=\"15\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202400391-math-0008.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper I 4\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.285em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.16em;\"></mjx-mspace><mjx-msub data-semantic-children=\"7,8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0008\" display=\"inline\" location=\"graphic/adts202400391-math-0008.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,9\" data-semantic-content=\"10\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper I 4\" data-semantic-type=\"infixop\"><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mrow data-semantic-=\"\" data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic-parent=\"5\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">TTMA</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.16em\"></mspace><msub data-semantic-=\"\" data-semantic-children=\"7,8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">PtI</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></msub></mrow>${\\rm (TTMA)}_2\\,{\\rm PtI}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container> shows a promising power conversion efficiency (PCE) of 19.63%. Thus, these designed 2D perovskite materials hold potential as substitutes for conventional 3D materials in photovoltaic applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"149 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition Metal-Derived 2D Layered Perovskites: A Promising Alternative to Pb in Photovoltaic Systems\",\"authors\":\"Tanmoy Kalita, Pallab Das, Dhruba Jyoti Kalita\",\"doi\":\"10.1002/adts.202400391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high sensitivity of 3D perovskites toward air and moisture hampers their commercialization due to material decomposition. Introducing their 2D counterparts may provide a remedy to these stability issues, as hydrophobic bulky organic cations can resist direct contact of [<span data-altimg=\\\"/cms/asset/ecb315cc-a2a1-4ad1-9bac-3a6c9dee91dd/adts202400391-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"8\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400391-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"2,3,8\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"upper M upper X 6 right bracket Superscript 4 minus\\\" data-semantic-type=\\\"punctuated\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mrow style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"closefence\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-msup data-semantic-children=\\\"4,7\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\"><mjx-mrow data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"empty\\\"></mjx-mrow><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mrow data-semantic-children=\\\"5\\\" data-semantic-content=\\\"6\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"postfixop\\\" size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"postfixop,−\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400391-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3,8\\\" data-semantic-content=\\\"3\\\" data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"upper M upper X 6 right bracket Superscript 4 minus\\\" data-semantic-type=\\\"punctuated\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">MX</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">6</mn></msub><mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"closefence\\\" data-semantic-type=\\\"punctuation\\\" stretchy=\\\"false\\\">]</mo></mrow><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"4,7\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"empty\\\"></mrow><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"5\\\" data-semantic-content=\\\"6\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"postfixop\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"postfixop,−\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo></mrow></msup></mrow>${\\\\rm MX}_6]{}^{4-}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> sheets with moisture in the air. In addition to air and water stability, 2D perovskites offer tunable optoelectronic properties through structural modulation, similar to their 3D counterparts. In this study, six different transition metal (TM)-based 2D hybrid halide perovskites are designed: <span data-altimg=\\\"/cms/asset/4b06f5ea-34d0-49de-a825-721b0041ad0c/adts202400391-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"9\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400391-math-0002.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper C l 4\\\" data-semantic-type=\\\"infixop\\\"><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: -0.285em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0.16em;\\\"></mjx-mspace><mjx-msub data-semantic-children=\\\"7,8\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400391-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper C l 4\\\" data-semantic-type=\\\"infixop\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">TTMA</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub><mspace data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" width=\\\"0.16em\\\"></mspace><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"7,8\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">PdCl</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></msub></mrow>${\\\\rm (TTMA)}_2\\\\,{\\\\rm PdCl}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\\\"/cms/asset/c22f4d3f-9cba-4133-83a9-ecf0a6db72e9/adts202400391-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"10\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400391-math-0003.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper B r 4\\\" data-semantic-type=\\\"infixop\\\"><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: -0.285em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0.16em;\\\"></mjx-mspace><mjx-msub data-semantic-children=\\\"7,8\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400391-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper B r 4\\\" data-semantic-type=\\\"infixop\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">TTMA</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub><mspace data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" width=\\\"0.16em\\\"></mspace><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"7,8\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">PdBr</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></msub></mrow>${\\\\rm (TTMA)}_2\\\\,{\\\\rm PdBr}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\\\"/cms/asset/a6844919-6b4d-4efc-b3bc-563f9c2717f4/adts202400391-math-0004.png\\\"></span><mjx-container ctxtmenu_counter=\\\"11\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400391-math-0004.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper I 4\\\" data-semantic-type=\\\"infixop\\\"><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: -0.285em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0.16em;\\\"></mjx-mspace><mjx-msub data-semantic-children=\\\"7,8\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400391-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P d upper I 4\\\" data-semantic-type=\\\"infixop\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">TTMA</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub><mspace data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" width=\\\"0.16em\\\"></mspace><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"7,8\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">PdI</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></msub></mrow>${\\\\rm (TTMA)}_2\\\\,{\\\\rm PdI}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\\\"/cms/asset/86687e52-cbb8-4ee6-9feb-37b76dde6c6b/adts202400391-math-0005.png\\\"></span><mjx-container ctxtmenu_counter=\\\"12\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400391-math-0005.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper C l 4\\\" data-semantic-type=\\\"infixop\\\"><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: -0.285em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0.16em;\\\"></mjx-mspace><mjx-msub data-semantic-children=\\\"7,8\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400391-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper C l 4\\\" data-semantic-type=\\\"infixop\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">TTMA</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub><mspace data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" width=\\\"0.16em\\\"></mspace><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"7,8\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">PtCl</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></msub></mrow>${\\\\rm (TTMA)}_2\\\\,{\\\\rm PtCl}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\\\"/cms/asset/a40490c2-287d-435d-b175-6f443b7352da/adts202400391-math-0006.png\\\"></span><mjx-container ctxtmenu_counter=\\\"13\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400391-math-0006.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper B r 4\\\" data-semantic-type=\\\"infixop\\\"><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: -0.285em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0.16em;\\\"></mjx-mspace><mjx-msub data-semantic-children=\\\"7,8\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400391-math-0006.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper B r 4\\\" data-semantic-type=\\\"infixop\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">TTMA</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub><mspace data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" width=\\\"0.16em\\\"></mspace><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"7,8\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">PtBr</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></msub></mrow>${\\\\rm (TTMA)}_2\\\\,{\\\\rm PtBr}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, and <span data-altimg=\\\"/cms/asset/995e0869-1574-498b-8038-0e60185f123e/adts202400391-math-0007.png\\\"></span><mjx-container ctxtmenu_counter=\\\"14\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400391-math-0007.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper I 4\\\" data-semantic-type=\\\"infixop\\\"><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: -0.285em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0.16em;\\\"></mjx-mspace><mjx-msub data-semantic-children=\\\"7,8\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400391-math-0007.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper I 4\\\" data-semantic-type=\\\"infixop\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">TTMA</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub><mspace data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" width=\\\"0.16em\\\"></mspace><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"7,8\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">PtI</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></msub></mrow>${\\\\rm (TTMA)}_2\\\\,{\\\\rm PtI}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container> as alternatives for Pb-based perovskites. Analysis of structural and thermodynamic parameters demonstrate that these designed perovskite materials can form structurally and thermodynamically stable compounds. Additionally, optical properties analysis reveals that the intended compounds exhibit absorption maxima in the visible range of the electromagnetic spectrum. Among the designed compounds, <span data-altimg=\\\"/cms/asset/0daaead7-afc7-4d7a-a6d7-1a0e990f87be/adts202400391-math-0008.png\\\"></span><mjx-container ctxtmenu_counter=\\\"15\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202400391-math-0008.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper I 4\\\" data-semantic-type=\\\"infixop\\\"><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: -0.285em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mspace data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0.16em;\\\"></mjx-mspace><mjx-msub data-semantic-children=\\\"7,8\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202400391:adts202400391-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/adts202400391-math-0008.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,9\\\" data-semantic-content=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"left parenthesis upper T upper T upper M upper A right parenthesis Subscript 2 Baseline upper P t upper I 4\\\" data-semantic-type=\\\"infixop\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1\\\" data-semantic-content=\\\"0,2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">TTMA</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub><mspace data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"operator\\\" width=\\\"0.16em\\\"></mspace><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"7,8\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">PtI</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></msub></mrow>${\\\\rm (TTMA)}_2\\\\,{\\\\rm PtI}_4$</annotation></semantics></math></mjx-assistive-mml></mjx-container> shows a promising power conversion efficiency (PCE) of 19.63%. Thus, these designed 2D perovskite materials hold potential as substitutes for conventional 3D materials in photovoltaic applications.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400391\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400391","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

三维过氧化物对空气和湿气的高敏感性会导致材料分解,从而阻碍其商业化。引入二维对应物可以解决这些稳定性问题,因为疏水性的大块有机阳离子可以阻止[MX6]4-${\rm MX}_6]{}^{4-}$ 片与空气中的水分直接接触。除了在空气和水中的稳定性之外,二维过氧化物还能通过结构调制提供可调的光电特性,这一点与三维过氧化物类似。本研究设计了六种不同的基于过渡金属 (TM) 的二维混合卤化物过氧化物:(TTMA)2PdCl4${\rm (TTMA)}_2\,{\rm PdCl}_4$,(TTMA)2PdBr4${/rm (TTMA)}_2\,{\rm PdBr}_4$,(TTMA)2PdI4${/rm (TTMA)}_2\,{\rm PdI}_4$,(TTMA)2PtCl4${/rm (TTMA)}_2\,{\rm PtCl}_4$、{\rm PtCl}_4$、(TTMA)2PtBr4${\rm (TTMA)}_2\, {\rm PtBr}_4$ 和 (TTMA)2PtI4${\rm (TTMA)}_2\, {\rm PtI}_4$ 作为铅基过氧化物的替代物。对结构和热力学参数的分析表明,这些设计的包光体材料可以形成结构和热力学稳定的化合物。此外,光学特性分析表明,所设计的化合物在电磁波谱的可见光范围内表现出最大吸收率。在设计的化合物中,(TTMA)2PtI4${\rm (TTMA)}_2\,{\rm PtI}_4$显示出19.63%的功率转换效率(PCE)。因此,这些设计的二维过氧化物材料在光伏应用中具有替代传统三维材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transition Metal-Derived 2D Layered Perovskites: A Promising Alternative to Pb in Photovoltaic Systems

Transition Metal-Derived 2D Layered Perovskites: A Promising Alternative to Pb in Photovoltaic Systems
The high sensitivity of 3D perovskites toward air and moisture hampers their commercialization due to material decomposition. Introducing their 2D counterparts may provide a remedy to these stability issues, as hydrophobic bulky organic cations can resist direct contact of [MX6]4${\rm MX}_6]{}^{4-}$ sheets with moisture in the air. In addition to air and water stability, 2D perovskites offer tunable optoelectronic properties through structural modulation, similar to their 3D counterparts. In this study, six different transition metal (TM)-based 2D hybrid halide perovskites are designed: (TTMA)2PdCl4${\rm (TTMA)}_2\,{\rm PdCl}_4$, (TTMA)2PdBr4${\rm (TTMA)}_2\,{\rm PdBr}_4$, (TTMA)2PdI4${\rm (TTMA)}_2\,{\rm PdI}_4$, (TTMA)2PtCl4${\rm (TTMA)}_2\,{\rm PtCl}_4$, (TTMA)2PtBr4${\rm (TTMA)}_2\,{\rm PtBr}_4$, and (TTMA)2PtI4${\rm (TTMA)}_2\,{\rm PtI}_4$ as alternatives for Pb-based perovskites. Analysis of structural and thermodynamic parameters demonstrate that these designed perovskite materials can form structurally and thermodynamically stable compounds. Additionally, optical properties analysis reveals that the intended compounds exhibit absorption maxima in the visible range of the electromagnetic spectrum. Among the designed compounds, (TTMA)2PtI4${\rm (TTMA)}_2\,{\rm PtI}_4$ shows a promising power conversion efficiency (PCE) of 19.63%. Thus, these designed 2D perovskite materials hold potential as substitutes for conventional 3D materials in photovoltaic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信