Weiwei Zhang, Binbin Yin, Arslan Akbar, Wen-Wei Li, Yitao Dai, K. M. Liew
{"title":"炭黑和再生碳纤维增强碱活性材料的纳米微孔结构特征","authors":"Weiwei Zhang, Binbin Yin, Arslan Akbar, Wen-Wei Li, Yitao Dai, K. M. Liew","doi":"10.1038/s44296-024-00033-9","DOIUrl":null,"url":null,"abstract":"Microscopic scrutiny aids in alkali-activated materials’ (AAM) application in construction industry. This study delves into the pore structure and properties of one-part alkali-activated slag (AAS) mortar modified by carbon black (CB) and recycled carbon fiber (rCF). The additives enhanced flexural strength by 51.82% (12.16 MPa) with lower water absorption (10.24%). Refinement of pore size and reduction of connectivity are key factors in improving properties. The densification effect of CB and the strong interface between rCF and gel were observed. Furthermore, AAS mortars exhibited multifractal characteristics within the range of micropores and capillary pores. Despite altering fractal regions, the additives did not affect its size dependence. The backbone fractal dimension increases with the addition of CB and rCF, exhibiting strong correlations with various macro properties, thus serving as a comprehensive parameter to characterize pore shape and distribution. This study deepens understanding of AAM composites, facilitating their adoption of low-carbon building materials.","PeriodicalId":471646,"journal":{"name":"npj Materials Sustainability","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44296-024-00033-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Nano-micro pore structure characteristics of carbon black and recycled carbon fiber reinforced alkali-activated materials\",\"authors\":\"Weiwei Zhang, Binbin Yin, Arslan Akbar, Wen-Wei Li, Yitao Dai, K. M. Liew\",\"doi\":\"10.1038/s44296-024-00033-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microscopic scrutiny aids in alkali-activated materials’ (AAM) application in construction industry. This study delves into the pore structure and properties of one-part alkali-activated slag (AAS) mortar modified by carbon black (CB) and recycled carbon fiber (rCF). The additives enhanced flexural strength by 51.82% (12.16 MPa) with lower water absorption (10.24%). Refinement of pore size and reduction of connectivity are key factors in improving properties. The densification effect of CB and the strong interface between rCF and gel were observed. Furthermore, AAS mortars exhibited multifractal characteristics within the range of micropores and capillary pores. Despite altering fractal regions, the additives did not affect its size dependence. The backbone fractal dimension increases with the addition of CB and rCF, exhibiting strong correlations with various macro properties, thus serving as a comprehensive parameter to characterize pore shape and distribution. This study deepens understanding of AAM composites, facilitating their adoption of low-carbon building materials.\",\"PeriodicalId\":471646,\"journal\":{\"name\":\"npj Materials Sustainability\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44296-024-00033-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44296-024-00033-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44296-024-00033-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nano-micro pore structure characteristics of carbon black and recycled carbon fiber reinforced alkali-activated materials
Microscopic scrutiny aids in alkali-activated materials’ (AAM) application in construction industry. This study delves into the pore structure and properties of one-part alkali-activated slag (AAS) mortar modified by carbon black (CB) and recycled carbon fiber (rCF). The additives enhanced flexural strength by 51.82% (12.16 MPa) with lower water absorption (10.24%). Refinement of pore size and reduction of connectivity are key factors in improving properties. The densification effect of CB and the strong interface between rCF and gel were observed. Furthermore, AAS mortars exhibited multifractal characteristics within the range of micropores and capillary pores. Despite altering fractal regions, the additives did not affect its size dependence. The backbone fractal dimension increases with the addition of CB and rCF, exhibiting strong correlations with various macro properties, thus serving as a comprehensive parameter to characterize pore shape and distribution. This study deepens understanding of AAM composites, facilitating their adoption of low-carbon building materials.