支持 ML 的毫米波软件定义无线电,具有可编程方向性

Marc Jean;Murat Yuksel;Xun Gong
{"title":"支持 ML 的毫米波软件定义无线电,具有可编程方向性","authors":"Marc Jean;Murat Yuksel;Xun Gong","doi":"10.1109/TMLCN.2024.3449834","DOIUrl":null,"url":null,"abstract":"The increasing demand for gigabit-per-second speeds and higher wireless node density is driving the need for spatial reuse and the utilization of higher frequencies above the legacy sub-6 GHz bands. Since these super-6 GHz bands experience high path loss, directional beamforming has been the main method of access to the large amount of bandwidth available at these higher frequencies. Hence, the programming of wireless beams with specific directions is emerging as a requirement for software-defined radio (SDR) platforms. To address this need, we introduce an affordable millimeter-wave (mmWave) testbed. Using a multi-threaded software architecture, the testbed allows for the convenient programming of mmWave beam directions using a high-level programming language, while also providing access to machine learning (ML) libraries as well as SDR methods traditionally deployed in Universal Software Radio Peripheral (USRP) devices. To showcase the potential of the testbed, we tackle the Angle-of-Arrival (AoA) detection problem using reinforcement learning (RL) methods on the receiver side. AoA detection and direction finding is a crucial need for the emerging use of super-6 GHz spectra. We design and implement Q-learning, Double Q-learning, and Deep Q-learning algorithms that passively inspect the Received Signal Strength (RSS) of the mmWave beam and autonomously determine the predicted AoA. The results indicate the feasibility of programming directionality of the wireless beams via ML-based methods as well as solving difficult problems pertaining to emerging directional wireless systems.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"1159-1177"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646573","citationCount":"0","resultStr":"{\"title\":\"ML-Enabled Millimeter-Wave Software-Defined Radio With Programmable Directionality\",\"authors\":\"Marc Jean;Murat Yuksel;Xun Gong\",\"doi\":\"10.1109/TMLCN.2024.3449834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demand for gigabit-per-second speeds and higher wireless node density is driving the need for spatial reuse and the utilization of higher frequencies above the legacy sub-6 GHz bands. Since these super-6 GHz bands experience high path loss, directional beamforming has been the main method of access to the large amount of bandwidth available at these higher frequencies. Hence, the programming of wireless beams with specific directions is emerging as a requirement for software-defined radio (SDR) platforms. To address this need, we introduce an affordable millimeter-wave (mmWave) testbed. Using a multi-threaded software architecture, the testbed allows for the convenient programming of mmWave beam directions using a high-level programming language, while also providing access to machine learning (ML) libraries as well as SDR methods traditionally deployed in Universal Software Radio Peripheral (USRP) devices. To showcase the potential of the testbed, we tackle the Angle-of-Arrival (AoA) detection problem using reinforcement learning (RL) methods on the receiver side. AoA detection and direction finding is a crucial need for the emerging use of super-6 GHz spectra. We design and implement Q-learning, Double Q-learning, and Deep Q-learning algorithms that passively inspect the Received Signal Strength (RSS) of the mmWave beam and autonomously determine the predicted AoA. The results indicate the feasibility of programming directionality of the wireless beams via ML-based methods as well as solving difficult problems pertaining to emerging directional wireless systems.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"2 \",\"pages\":\"1159-1177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646573\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10646573/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10646573/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对每秒千兆位速度和更高无线节点密度的需求不断增长,推动了对空间重用和利用传统 6 GHz 以下频段以上更高频率的需求。由于这些超 6 GHz 频段的路径损耗较高,定向波束成形一直是利用这些较高频率的大量带宽的主要方法。因此,软件定义无线电(SDR)平台需要对特定方向的无线波束进行编程。为了满足这一需求,我们推出了一种经济实惠的毫米波(mmWave)测试平台。该测试平台采用多线程软件架构,可使用高级编程语言方便地对毫米波波束方向进行编程,同时还可访问机器学习(ML)库以及传统上部署在通用软件无线电外设(USRP)设备中的 SDR 方法。为了展示该测试平台的潜力,我们在接收端使用强化学习(RL)方法解决了到达角(AoA)检测问题。AoA检测和测向是超6 GHz频谱新兴应用的关键需求。我们设计并实施了 Q-learning、Double Q-learning 和 Deep Q-learning 算法,这些算法可被动检测毫米波波束的接收信号强度 (RSS),并自主确定预测的 AoA。研究结果表明,通过基于 ML 的方法对无线波束的方向性进行编程以及解决与新兴定向无线系统相关的难题是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML-Enabled Millimeter-Wave Software-Defined Radio With Programmable Directionality
The increasing demand for gigabit-per-second speeds and higher wireless node density is driving the need for spatial reuse and the utilization of higher frequencies above the legacy sub-6 GHz bands. Since these super-6 GHz bands experience high path loss, directional beamforming has been the main method of access to the large amount of bandwidth available at these higher frequencies. Hence, the programming of wireless beams with specific directions is emerging as a requirement for software-defined radio (SDR) platforms. To address this need, we introduce an affordable millimeter-wave (mmWave) testbed. Using a multi-threaded software architecture, the testbed allows for the convenient programming of mmWave beam directions using a high-level programming language, while also providing access to machine learning (ML) libraries as well as SDR methods traditionally deployed in Universal Software Radio Peripheral (USRP) devices. To showcase the potential of the testbed, we tackle the Angle-of-Arrival (AoA) detection problem using reinforcement learning (RL) methods on the receiver side. AoA detection and direction finding is a crucial need for the emerging use of super-6 GHz spectra. We design and implement Q-learning, Double Q-learning, and Deep Q-learning algorithms that passively inspect the Received Signal Strength (RSS) of the mmWave beam and autonomously determine the predicted AoA. The results indicate the feasibility of programming directionality of the wireless beams via ML-based methods as well as solving difficult problems pertaining to emerging directional wireless systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信