{"title":"基于先验知识的显式-隐式扩散模型用于生成医学图像分割","authors":"Bicheng Xia , Bangcheng Zhan , Mingkui Shen , Hejun Yang","doi":"10.1016/j.knosys.2024.112426","DOIUrl":null,"url":null,"abstract":"<div><p>The diffusion probabilistic model (DPM) has achieved unparalleled results in current image generation tasks, and some recent research works employed it in several computer vision tasks, such as image super-resolution, object detection, etc. Thanks to DPM's superior ability to generate fine-grained details, these research efforts have yielded significant successes. In this paper, we propose a new DPM-based generative medical image segmentation method, named EIDiffuSeg. Specifically, we first construct an explicit-implicit aggregation priori knowledge with directional supervision ability by mining the semantic distribution pattern in the frequency and spatial domains. Then, the explicit-implicit aggregation priori knowledge is integrated into the different encoding stages of the denoising backbone network using a novel unsupervised priori knowledge induction strategy, which can guide the model to generate a segmentation mask of the region of interest directionally from a random inference process. We evaluate our method on three medical image segmentation benchmark datasets with different modalities and achieve the best segmentation results compared to state-of-the-art methods. Especially, compared to several current diffusion-based image segmentation methods, we achieved a 9% Dice improvement in the polyp segmentation benchmark. Our code will be available at <span><span>https://github.com/Notmezhan/EIDiffuSeg</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit-implicit priori knowledge-based diffusion model for generative medical image segmentation\",\"authors\":\"Bicheng Xia , Bangcheng Zhan , Mingkui Shen , Hejun Yang\",\"doi\":\"10.1016/j.knosys.2024.112426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The diffusion probabilistic model (DPM) has achieved unparalleled results in current image generation tasks, and some recent research works employed it in several computer vision tasks, such as image super-resolution, object detection, etc. Thanks to DPM's superior ability to generate fine-grained details, these research efforts have yielded significant successes. In this paper, we propose a new DPM-based generative medical image segmentation method, named EIDiffuSeg. Specifically, we first construct an explicit-implicit aggregation priori knowledge with directional supervision ability by mining the semantic distribution pattern in the frequency and spatial domains. Then, the explicit-implicit aggregation priori knowledge is integrated into the different encoding stages of the denoising backbone network using a novel unsupervised priori knowledge induction strategy, which can guide the model to generate a segmentation mask of the region of interest directionally from a random inference process. We evaluate our method on three medical image segmentation benchmark datasets with different modalities and achieve the best segmentation results compared to state-of-the-art methods. Especially, compared to several current diffusion-based image segmentation methods, we achieved a 9% Dice improvement in the polyp segmentation benchmark. Our code will be available at <span><span>https://github.com/Notmezhan/EIDiffuSeg</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124010608\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010608","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Explicit-implicit priori knowledge-based diffusion model for generative medical image segmentation
The diffusion probabilistic model (DPM) has achieved unparalleled results in current image generation tasks, and some recent research works employed it in several computer vision tasks, such as image super-resolution, object detection, etc. Thanks to DPM's superior ability to generate fine-grained details, these research efforts have yielded significant successes. In this paper, we propose a new DPM-based generative medical image segmentation method, named EIDiffuSeg. Specifically, we first construct an explicit-implicit aggregation priori knowledge with directional supervision ability by mining the semantic distribution pattern in the frequency and spatial domains. Then, the explicit-implicit aggregation priori knowledge is integrated into the different encoding stages of the denoising backbone network using a novel unsupervised priori knowledge induction strategy, which can guide the model to generate a segmentation mask of the region of interest directionally from a random inference process. We evaluate our method on three medical image segmentation benchmark datasets with different modalities and achieve the best segmentation results compared to state-of-the-art methods. Especially, compared to several current diffusion-based image segmentation methods, we achieved a 9% Dice improvement in the polyp segmentation benchmark. Our code will be available at https://github.com/Notmezhan/EIDiffuSeg.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.