Xingli Zhang, Zihan Zhang, Ruisheng Jia, Xinming Lu
{"title":"通过数据融合识别微地震信号的研究","authors":"Xingli Zhang, Zihan Zhang, Ruisheng Jia, Xinming Lu","doi":"10.1016/j.cageo.2024.105708","DOIUrl":null,"url":null,"abstract":"<div><p>The present study proposes a double-branch classification network, DPNet (Double Path Net), for the classification and identification of microseismic and blasting signals based on multimodal feature extraction. The vibration signals’ one-dimensional spectrogram and two-dimensional wavelet time–frequency graph are inputted into the double branch network. Subsequently, convolutional neural networks and ResNet are employed to extract the one-dimensional frequency features and two-dimensional time–frequency features of the vibration signals, respectively. Experimental results demonstrate that our proposed method achieves outstanding classification performance with an accuracy of 97.34% for microseismic signals and blasting signals. This research not only provides innovative solutions to practical problems but also introduces a novel idea of multimodal feature extraction at a theoretical level. By successfully applying it to efficiently classify complex signals in mining engineering, we offer a feasible solution that holds promising prospects for practical applications in this field.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"192 ","pages":"Article 105708"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on microseismic signal identification through data fusion\",\"authors\":\"Xingli Zhang, Zihan Zhang, Ruisheng Jia, Xinming Lu\",\"doi\":\"10.1016/j.cageo.2024.105708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study proposes a double-branch classification network, DPNet (Double Path Net), for the classification and identification of microseismic and blasting signals based on multimodal feature extraction. The vibration signals’ one-dimensional spectrogram and two-dimensional wavelet time–frequency graph are inputted into the double branch network. Subsequently, convolutional neural networks and ResNet are employed to extract the one-dimensional frequency features and two-dimensional time–frequency features of the vibration signals, respectively. Experimental results demonstrate that our proposed method achieves outstanding classification performance with an accuracy of 97.34% for microseismic signals and blasting signals. This research not only provides innovative solutions to practical problems but also introduces a novel idea of multimodal feature extraction at a theoretical level. By successfully applying it to efficiently classify complex signals in mining engineering, we offer a feasible solution that holds promising prospects for practical applications in this field.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"192 \",\"pages\":\"Article 105708\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001912\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001912","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Research on microseismic signal identification through data fusion
The present study proposes a double-branch classification network, DPNet (Double Path Net), for the classification and identification of microseismic and blasting signals based on multimodal feature extraction. The vibration signals’ one-dimensional spectrogram and two-dimensional wavelet time–frequency graph are inputted into the double branch network. Subsequently, convolutional neural networks and ResNet are employed to extract the one-dimensional frequency features and two-dimensional time–frequency features of the vibration signals, respectively. Experimental results demonstrate that our proposed method achieves outstanding classification performance with an accuracy of 97.34% for microseismic signals and blasting signals. This research not only provides innovative solutions to practical problems but also introduces a novel idea of multimodal feature extraction at a theoretical level. By successfully applying it to efficiently classify complex signals in mining engineering, we offer a feasible solution that holds promising prospects for practical applications in this field.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.